Q B
 296 I 39

EXTRACTS

FROM

NARRATIVE REPORTS OF OFFICERS OF THE

 Surbey of fndia

 Surbey of fndia}

FOR THE SEASON

1908-09

PREPARED UNDER THE DIRECTION OF
Colonel F. B. LONGE, R.E., C.B., A.-D.-C. SURVEYOR GENERAL OF INDIA

CONTENTS

I.-The Magnetic Survey of India
II.-Tidal and Levelling Operations
iII.-Pendulum Operations
IV.-Triangulation in India

CALCUTTA

Agcints for the Sale of Books published by the Superintendent of Government Printing, India, Calcutta.

In England.
E. A. Arnold, 41 and 43, Maddox Street, Bond Street, London, W.
Constable d Co., 10, Orange Street, Leicester Square. W.C.
Grindlay \& Co., 54, Parliament Street, London, S. W.
H. S. King \& Co., 65, Cornhill, and 9, Pall Mall, London.
P. S. King \& Son, 2 and 4, Great Smith Street, Westminster.
Kegan Paul, Trench, Trügner \& Co., 43. Gerrard Street, Soho, London, W.

Bervard Quaritch, if, Grafton Street, New Bond Street, W.
B. H. Blacruele, 50 and 51, Broad Street, Oxford. Detghton, Bell \& Co., Cambridge.
T. Fisfer Unwin, i, Adelphi Terrace, London, W.C.
W. Thacxer \& Co., 2, Creed Lane, London, E. C.

Luzac \& Co., 46, Great Russell Street, London, W.C.

On the Continent.
R, Frienlándrr \& Sohn, Betlin, W. N., Carlstrasse, in.
Otro Harrassowitz, Leipzig, Germany.
Karl Hiersemann, Leipzig, Germany.
Rudolp Haupt, 1, Dorrienstrasse, Leipzig, Germany.
Ernest Leroux, 28, Rué Bonaparte, Paris. Martinus Nijhoff, The Hague, Holland.

lv India.

Thacker, Spink \& Co., Calcutta and Simla. Nowman \& Co., Calcutta.
S. K. Lahiri \& Co., Calcutta.
R. Cambray \& Co., Calcutta.
B. Banbrjer \& Co., Calcutta.

Higginhotham \& Co, Madras.
V. Kalyanarama Ayar \& Co., Madras.
G. A. Natesan \& Co., Madras.

Thompson \& Co., Madras.
S. Murthy \& Co., Madras.

Temple \& Co., Madras.
Combridge \& Co., Madras.
Thacker \& Co., LD., Bombay.
A. J. Combridge \&: Co., Bombay.
D. B. Taraporevala, Sons \& Co., Bombay.

Radhabal Atmaram Sagoon, Bombay.
N. B. Mathtr, Superintendent, Nazair Kanun Hind Press, Allahabad.
Rai Sabib M. Gulab Singh \& Sons, Mufidi-Ain Press, Lahore and Calcutta.
Superintrnient, American Baptist Mission Press, Rangoon.
Sunder Pandurang, Bombay.
A. M. \& J. Ferguson, Ceylon.
A. Chand \& Co., Punjab.
P. R. Rama Iyar \& Co., Madras.

Gopal Narafan \& Co., Bombay.
Babu S. C. Talukdar, Proprietur, Students and Company, Cooch Behar.

EXTRACTS

FROM

NARRATIVE REPORTS

OF OFFICERS OF THE

Surbey of Endia

FOR THE SEASON
1908-09

Prepared under the direction of
Colonel F. B. LONGE, R.E., C.B., A.-D.-C.
surveyor general of india

CONTENTS

I.-The Magnetic Survey of India
II.-Tidal and Levelling Operations
III.-Pendulum Operations
IV.-Triangulation in India

CALCUTTA
SUPERINTENDENT GOVERNMENT PRINTING, INDIA

CONTENTS.

1.-The Magnetic Survey of India 1
11.-Tidal and Levelling Operations 70
III.-Pendulum Operations 100
IV.-T:iangulation in India 112

I
 THE MAGNETIC SURVEY OF INDIA.

Extracted from the Narrative Report of Captain R. H. Thomas, R.E., in charge No. 26 Party (Magnetic) for season 1908-09.

Personnel.
Imporial Officers.
Captain R. H. Thomas, R.E., in charge from ist April 1909.
Lieutenant H. J. Couchman, R.E., till $3^{\text {oth }}$ April 1909 (in charge till 31st March 1909).
Lieutenant H. T. Morshead, R.E., till 3ist March 1909.

The personnel of the party is shown in the margin.

Provincial Officers.

Messrs. E. C. J. Bond, H. P. D. Morton, R. P. Ray, N. R. Mazumdar and R. B. Mathur.

Subordinate establishments.
2 Observers, 13 Recorders, 1 Computer, 2 Surveyors and i Writer.

Health of party.-The health of the party was on the whole satisfactory, but the detachments working in Burma suffered severely at times from inalaria.

Introduction.

The present report deals with the work of the Magnetic Survey in 1908-09. The report is divided into three main parts as follows :-
I.-A brief account of the operations in the field and recess quarters, with a table of the preliminary values of the magnetic elements at field and repeat stations in 1908-09, and an index chart showing the positions of all stations of observation to date.
Nots.-For convenience of reference the table of preliminary values and index chart are placed at the end of Part III.
II.-A note on the working of the magnetic observatories in 1908-og.
III.-Tables of results at the magnetic observatories in 1908.

> PART I.
> FIELD OPERATIONS AND RECESS WORK IN Igo8-og.
> (a) Work of the field detachments.
> (b) Field work of the Imperial officers.
> (c) Work during recess.
> Reduction of field work.
> Computation of Chin-Litshai-Arakan Boundary triangulation.
> Investigation of differences of instruments in H. F.
> (d) Diurnal variation in H. F. in Southern India.
> (e) Comparigon of a set of instrumente belonging to the Carnegie Institution, Washirg. ton, U. S. A., with the survey standards.
> (f) Differences of survey instruments in igo8-og.
> (g) Values of distribution co-efficients in 1gc8-09
> (h) Programme of work in rgog-io.
> (i) Results published in this report.
(a) Work of the field detachmenis.-The field season opened on October 26th, 1908, and closed on May 3rd, 1939. Four field detachments were employed during the year under report; two of these worked in Burma completing the preliminary survey of that country, the remaining two were occupied in the detailed examination of three areas shown in the index map attached.

Of the Burma detachments, one observer worked along the South-West coast and in the Irrawaddy delta; this observer also completed observations at three stations on the Kaladan river, on the border of the unadministered area of the Chin Hills, thus materially reducing the gap hitherto existing in this district : the second detachment completed the magnetic survey of Tenasserim and in addition established a repeat station at Port Blair; the latter had long been considered advisable, but hitherto it had been found impracticable to spare the time required. Owing to the difficult country met with the total outturn of new stations of the preliminary survey was 4 I only.

The total number of stations of the preliminary survey to date is 1,255 to which must be added 6 stations in Kashmir and Ladákh, the results at which have been kindly communicated by Mr. D. C. Sowers of the Carnegie Institution of Terrestrial Magnetism, Washington, U. S. A., who observed in Septem$b e r$ and October of the present year.

The two detachments engaged on the detail survey occupied 122 new stations and in addition repeated observations at 11 old field stations falling in their respective areas.
(b) Work of the Imperial Officers. - Two officers of the Imperial Service were available throughout the year.

The four survey observatories were inspected and comparative observations carried out at each and also at Alíbág.

In addition to those at 22 repeat stations, observations were made at 15 old field stations, suitably situated between the former to obtain further values of the secular change in the magnetic elements.

Fifty-seven old field stations have now been revisited and a preliminary reduction of the secular change values made: an examination of the results showed that while the secular change values in dip and declination were on the whole fairly in accord with those from repeat stations, the seoular changes in horizontal force revealed unexpected abnormalities. It thus became evident that our repeat stations are too few in number and the practice of reobserving at suitable old field stations will therefore be continued. At most of these it should be possible to identify the station site within a few feet, but in order to guard against accidental error in areas of local disturbance, it will probably be advisable to reobserve at groups of two or three stations.

In paragraph 3 of last year's report, it was noted that, if time was available, hourly observations of H. F. would be taken in Southern India and possibly also in Lower Burma and the results compared with the curves at Kodaikánal. For Southern India this has been done: Lieutenant Couchman, R.E., made halfhourly observations from 8 A.M. to 4 P.M. on 5 days at Trichinopoly (latitude $10^{\circ} 48^{\prime} \quad 10^{\prime \prime}$ longitude $78^{\circ} 40^{\prime} 40^{\prime \prime}$): the results are discussed elsewhere in this report.
(c) Work during recess.-During the recess season the computations of the previous season's field work, and the reduction and tabulation of the base station results for 1908 have been completed.

Reduction of field work.-The reduction of the field work with reference to the correction for diurnal variation in horizontal force and declination, and instrumental difference in declination has been continued, the repeat stations and reobserved field stations being first dealt with, with a view to obtaining the best available values of secular change. The repeat stations and reobserved field stations have been completed up to $1907-08$, the field stations up to 1903.04.

The party was inspected in recess by the Superintendent, Trignometrical Surveys, on 24th June 1909.

Computation of Chin-Lushai•Arakan boundary triangulation.-The imperial officers recomputed the triangulation carried out by Mr. Morton of this party in 1907-08 in connection with the Chin-Lushai-Arakan Boundary survey. This triangulation was executed rapidly without previous reconnaissance in densely wooded country and in unfavourable weather: its adjustment proved difficult.

Satisfactory results were finally obtained, but not without the expenditure of considerable time, during which the investigation of the many pressing questions arising out of the magnetic work was necessarily in abeyance.

Investigation of differences of instruments in H. F.-The principal subject of investigation during the recess season was the differences of the various instruments from the standard in horizontal force.

The system of computing H in use at present is as follows :-The mH and $\frac{\mathrm{m}}{\mathrm{H}}$ of the vibration and deflection observations are combined to obtain values of m_{o} only. These values show appreciable flucluations from the mean value, due to errors of observation and changes in H during the time of observation: it is the practice to repeat observations where the value of m_{o} differs more than $\mathrm{o}^{\circ} 5$ from the previous mean value.

Ordinarily the value of m_{0} falls slowly with lapse of time, it is also liable to sudden falls which are probably due to accidental rough handling : cases have also occurred where the magnetic moment has, during the recess season, apparently recovered from slight temporary losses. Tie values of m_{0} obtained as above are divided into groups and a scrutiny of these enables a mean value of m_{0} applicable to any given period to be readily ascertained. This value is then applied to the deflection observations and the value of H obtained.

A table was published in last year's report showing the differences of the various instruments from the standard after recomputation as above.

These differences show considerable variation from time to time: apart from gross errors of observation, the principal causes of these variations may be either change in the value of the moment of inertia of any or all the magnets, change of the distribution co-efficients or both these causes combined; in the first case the value of mH is affected, in the second $\frac{\mathrm{m}}{\mathrm{H}}$, thus there will be errors in the assumed value of m_{o} and also in the deduced value of H. Changes in the moment of inertia have not been considered for the present: the observations of $\pi^{\prime} \mathrm{K}$ carried out prior to 1906 have no great weight cwing to the changes in the inertia bars Nos. 17 and 2 (see Narrative Report 1904-05), but since the receipt of the standard bar (S. G.) observations have been made with all the field magnets in 1906, 1908 and recently in the present year: these observations will serve to show whether changes in the moment of inertia are sufficiently large to appreciably alter the value of H .

As regards the size of the error which might be introduced by neglecting changes in $\operatorname{lo}_{6} \pi^{\mathbf{r}} \mathrm{K}$, the observations with the standard magnet No. 17 show
an apparent gradual and regular fall in the value, corresponding to a correction of-19y between 1901 and 1908. Though corrections of similar amount are unlikely with the field magnets, owing to these being subjected to less handling, it is evident that this source of error requires investigation.

The absolute moment of inertia (irrespective of dimensions) of the bar S. G. was determined in 1905 ; changes in this value are easily determined by periodic weighments, such changes being a function of the mass of the bar.

The following are the values found :-

The corresponding decrement of the $\log \mathrm{K}$ from 1906 to 1909 is 00000057 a quantity which is considerably less than the error of observation of the moment of inertia of the magnet and its appendages.

As regards the distribution co-efficients the expression for the connection between m, H, the deflecting distance (r) and the angle of deflection (u) is $\frac{2 m}{r^{3}}\left(1-\frac{2 u}{r^{3}}-q t-q^{1} t^{2}\right)\left(1+\frac{p}{r^{2}}+\frac{Q}{r^{4}}+\frac{R}{r^{6}}+. . . . \quad . \quad.\right)=H \sin u$; when P and Q are the distribution constants.

To obtain P, observations at two distances are required; if Q is also required to be taken into account, observations at three distances and similarly for R observations at 4 distances are necessary.

It has, however, been pointed out by Dr. Chree (Phil. Mag. 1904) that the co-efficient R is seldom likely to be of practical moment in English magnetometers : it has been considered negligible in the Indian survey instruments.

Observations at the three distances $22^{\circ} 5,30$ and 40 cms . have been the invariable rule almost from the beginning of the survey, but the practice has been to apply a distribution co-efficient ($1-\frac{\mathbf{P}^{\prime}}{\mathbf{r}^{2}}$) found from the two nearer distances only.
$\xrightarrow[r^{+}]{0}$ was clearly not negligible, the corrections on this account varying considerably in magnitude with different instruments, but it was hoped that the corrections would be sufficiently invariable to enable them to be easily applied to the values of H in the final reduction.

It seemed not unlikely, however, that changes in the differences of various instruments from the standard might be, in part at least, ascribed to changes in P and Q and an investigation of these changes has therefore been commenced.

In the first instance P and Q were calculated from the formulæ

$$
\begin{aligned}
& P_{1,2}^{\prime}=P+Q\left(\frac{1}{r_{1}^{2}}+\frac{1}{r_{1}^{2}}\right)+\frac{P Q}{r_{1}^{2} r_{2}^{2}}(i) \\
& P_{i, 2}^{\prime}-P_{2,3}^{\prime}=Q\left(\frac{1}{r_{1}^{2}}-\frac{1}{r_{3}^{\prime}}\right)-
\end{aligned}
$$

(See Narrative Report, 1902-03, for the complete demonstration).
The values $\mathrm{P}_{1,0}^{\prime}$ and $\mathrm{P}_{2,3}^{\prime}$, being the means of months or groups after rejection of values lying sutside 5% and 10% limits respectively.

The corrections to m_{0} and H resulting from the substitution of $\left(1+\frac{\mathbf{P}}{r^{2}}+\frac{0}{r^{4}}\right)^{-1}$ for $1-\frac{\mathrm{P}}{\mathrm{r}^{2}}$ were then calculated and applied to the comparative observations. The resulting values of the differences of instrument: from the standard showed much better agreement than those published, morcover the base lines of the variation instruments at the observatories were murh improved as regards the elinimation of sudden changes for which it was otherwise difficult to account.

This method of finding P and Q did not prove altogether satisfactory as it is difficult to determine where changes occur in the values of $\mathrm{P}_{1,2}^{\prime}$ and $\mathrm{P}_{2,3}^{\prime}$ by mere inspection and the method of rejection of individual values is somewhat arbitrary.

The grouping of values was determined therefore by changes of m_{0} rather than changes in P's, but this is also unsatisfactory since m_{0} will apparently remain unchanged (when $\frac{m}{H}$ is computed with $1-\frac{P_{1,2}}{\mathbf{r}^{2}}$) if $P_{2,3}$ alone changes.

It was therefore decided to compute P and Q from the formulæ given by Dr. Chree (Phil. Mag., Aug. 1904).

$$
\begin{aligned}
& \text { where } P=\frac{W_{1} r_{1}{ }^{4}\left(r_{3}{ }^{4}-r_{2}{ }^{4}\right)+W_{2} r_{2}{ }^{4}\left(r_{1}{ }^{4}-r_{3}^{4}\right)+W_{3} r_{3}{ }^{4}\left(r_{2}{ }^{4}-r_{1}{ }^{4}\right)}{W_{1} r_{1}{ }^{4}\left(r_{2}{ }^{2}-r_{3}{ }^{2}\right)+W_{2} r_{2}{ }^{4}\left(r_{3}{ }^{2}-r_{1}{ }^{2}\right)+W_{3} r_{3}{ }^{4}\left(r_{1}-r_{2}{ }^{2}\right)} \\
& \text { and } \left.Q=\frac{r_{1}{ }^{2} r_{2}{ }^{2} r_{3}{ }^{2}\left\{W_{1} r_{1}{ }^{2}\left(r_{2}{ }^{2}-r_{3}{ }^{2}\right)+W_{3} r_{2}{ }^{2}\left(r_{3}{ }^{3}-r_{1}{ }^{2}\right)+W_{3} r_{3}{ }^{3}\left(r_{1}{ }^{2}-r_{1}{ }^{2}\right)\right.}{W_{1} r_{1}{ }^{4}\left(r_{2}{ }^{2}-r_{3}{ }^{2}\right)+W_{2} r_{2}{ }^{4}\left(r_{3}{ }^{2}-r_{1}{ }^{2}\right)+W_{3} r_{3}{ }^{4}\left(r_{1}{ }^{2}-r_{2}{ }^{2}\right)}\right\}
\end{aligned}
$$

where $W_{1}=\frac{1}{2} r_{1}^{3} \sin u\left(1-\frac{2 u}{r_{1}^{3}}-q t-q^{1} t^{2}\right)^{-1}$ and similarly W_{2} and W_{3} : W_{1} W_{2} and W_{3} are means from a number of observations and r_{1}, r_{2}, r_{3} the actual distances corresponding to $22 \cdot 5,30$ and 40 cms .

The procedure adopted is as follows:-The individual values of W, W, and W_{3} are written down and the differences $W_{1}-W_{2}, W_{2}-W_{3}$ and $W_{1}-W_{3}$ are taken out. A scrutiny of these differences enables indifferent observations to be rejected.

Means of $W_{1} W_{2}$ and W_{3} are then taken, only those days' results being used on which observations at all three distances are accepted.

The observations at Kodaikánal observatory only have been worked up by this method at present : monthly means of $W_{1} W_{2}$ and W_{3} were taken out but the means of two or three months were used for computing P and Q according to the number of individual values and evidence of change in the value of the mean differences.

The results showed that the values of P and Q had probably changed on at least three occasions, the corrections to H by the substitution of $\left(\mathrm{I}+\frac{\mathrm{P}}{\mathrm{r}^{2}}+\underset{\mathrm{r}^{4}}{Q}\right)^{-1}$ for $\mathrm{I}-\frac{\mathrm{P}_{1} \mathrm{t}, \mathrm{a}}{\mathrm{r}^{2}}$ varying from 50 to 74γ.

This subject will be further referred to in next year's report when the values of P and Q for the remaining magnets should be available: there is sufficient evidence that variations in P and Q are appreciable enough to warrant careful investigation.

A point worthy of notice is that the approximation $1-\frac{\mathrm{P}}{\mathrm{r}^{\prime}}$ for $(1++$ $\left.\frac{\mathrm{F}}{\mathrm{r}^{2}}\right)^{-1}$ in the formula for $\frac{\mathrm{m}}{\mathrm{H}}$ is objectionable with the Indian survey magnets.

If H is measured to 5 significant figures the substitution is objectionable when the values of H is affected by $5 \times 10^{-6} \mathrm{C}$. G. S.

Dr. Chree has shown that the limiting value of $\frac{\mathrm{P}}{\mathrm{r}^{2}}$ for which the approximation is justified is given by $\frac{\mathrm{P}}{\mathrm{r}^{i}}=\cdot 0053$ or at 22.5 cms . $\mathrm{P}=2.68$
when $\mathrm{H}=0.36 \mathrm{C} . \mathrm{G} . \mathrm{S}$.
The values of $P_{t, 2}$ in the Indian magnets range from 5.8 to 8.3 the corresponding errors in H are at Dehra Dún 2γ and 8γ.
(d) Dinrnal variation in H. F. in Southern India.-In Part I, paragraph 3 of last year's Narrative Report it was stated that when the Kodaikinal observatory results were used to obtain the horizontal force diurnal variation
correction for field stations by an empirical linear formula depending on the geographical latitude, the difference between such cortection and that obtained from any other two observatories was commonly large. During the field season, therefore, special observations were made at 「richinopoly (some 35 miles north of Kodaikánal) to endeavour to determine whether.Kodaikánal only was abnormal or whether the empirical formula employed did not nold good in low magnetic latitudes.

These special observations consisted in taking deflections at every half hour from 8 A.M. to 4 P.M. for 5 days and thus obtaining diurnal variation figures which could be directly compared with those at Kodaikanal and the other observatories.

Fortunately the 5 days selected were all calm, and no correction for disturbance has been applied to the values given below.

Mean values of H.F.at Trichinopoly and Kodaikanal, fanuary 18th—22nd, 1909, with diurnal variation deduced therefrom.

Hours.	Trichinopoly.		Kodaikanal.		Difference$\mathrm{T}-\mathrm{K} .$
	Meaı. values of H. F .	$\begin{gathered} \text { Diurnal range } \\ \text { T. } \end{gathered}$	Mean values of H. \mathbf{F}.	$\begin{aligned} & \text { Diurnal ronge } \\ & \text { K. } \end{aligned}$	
8-0	-38050	-12	$\cdot 37512$	-10	-2
883°	62	± 0	20	2	$+2$
900	65	$+3$	26	$+4$	- 1
9.30	74	12	33	11	+ 1
1000	75	13	37	15	-2
80-30	81	19	45	23	-4
$1 \mathrm{H}^{\circ}$	85	23	49	27	-4
11-30	91	29	53	31	-2
1200	86	24	47	25	- 1
12-30	77	15	40	18	-3
13.0	66	4	28	6	- 2
13.30	57	- 5	15	- 1	$+2$
14.0	45	17	03	19	$+2$
14.30	39	23	495	27	+ 4
150	33	29	90	32	$+3$
15-30	$3+$	28	89	33	$+5$
16.0	33	29	89	33	$+4$
Mcan	3^{88062}		'37522		

It will be at once noticed that, while the agreement is good, there is distinct evidence that the range at Kodaikánal is greater than at Trichinopoly by about 8γ.

If the linear relation between diurnal variation and geographical latitude is warranted in India, the range in H. F. at Kodaikánal should only be 1 or 2γ greater than that at Trichinopoly and it remains, therefore, to determine whether the Trichinopoly values follow the latitude law.

This may be done by computing the diurnal variation at Toungoo from the observed values at Barrackpore and Trichinopoly and the table below shows the result of such computation: the similar figures obtained from Barrackpore and Kodaikánal are given for comparison in column 7.

Hous.	Diurnal variation at Barrackpore.	Diurnal variation at Trichinopoly.	Computed variation at Toungoo.	Observed variation at Toungoo.	Difference O-C from Barrackpore and 1 richinopoly.	Difference O-C from Barcackpore and KodaikansI.
1	2	3	4	5	6	7
8-0	+6	-12	0	+ 1	+ 1	0
8-30	6	0	$+4$	4	0	0
9-0	9	$+3$	7	5	-2	-2
9-30	10	12	11	8	-3	-2
10-0	3	13	10	9	- I	- I
10-30	7	19	11	13	+ 2	+ 1
11-0	4	23	10	12	+2	+ I
11-30	3	29	11	9	-2	-3
12.0	1	24	S	7	- I	-2
12-30	- I	15	4	4	0	- 1
13.0	3	4	-1	2	+3	+2
13.30	5	- 5	2	- 3	-1	+ 3
14.0	8	17	11	8	+ 3	+ 3
14-30	9	23	14	12	$+2$	+ 3
150	to	29	16	16	0	$+1$
-15-30	I	28	16	18	- 2	0
16*0	12	29	17	17	0	+1

Columns (6) and (7) show that the differences are in every case less than the probable error of observation and thus no useful conclusion can be drawn from the table.

In view, however, of the rapid increase of range between Trichinopoly and Kodaikánal, it is advisable to obtain diurnal variation figures for some place south of Kodaikánal to determine whether the range at Kodaikánal is abnormal or does actually increase rapidly in low magnetic latitudes. This will be done at 'Tuticorin (Lat. $8^{\circ} 4^{\prime}$ ') during the ensuing field season.

With regard to the discrepancies noted in the corrections when Kodiakánal results are used, it is possible that in a number of cases this has arisen from the selecred quiet days not being the same at all the observatories. The practice has been to supply the Director, Kolába Observatory, with a c!assification of the curves for each observatory and five quiet days have been selected by him. It has
frequently happened, however, that in one or other observatory the declination trace has been defective on one of the selected days and another day has been substituted in that observatory. In referring results to five arbitrarily selected days per month, it is essential that the days should be the same in each observatory : it is possible in many months to select several combinations of five quiet days whose mean approximately coincides with the middle of the month, but the diurnal variations so deduced will vary considerably.
(e) Comparison of the Dehra Dun standards with instruments belonging to the Carnegie Institute, Washington, U. S. A.-In October 1909, Mr. D. C. Sowers of the Carnegie Institute of Terrestrial Magnetism who had made a series of observations while travelling overland from Pekin to Srínagar arrived at Dehra Dún to compare his instruments with the Indian Survey Standards.

Direct comparisons were made between the various instruments, sites being interchanged, the north and south houses being used.

Mr. Sowers used unifilar magnetometer No. ro by Cooke and Sons and dip circle 171 by Dover: the Dehra standards are magnetometer 17 by Elliott and Earth Inductor No. 30 by Schultze.

In the abstracts which follow the notation $\frac{\mathrm{SH}}{\mathrm{I}_{30}} \frac{\mathrm{NH}}{10}$, etc. mean the result. of observations in the southern and northern houses with the instrument in the denominator.

Abstract of comparisons in Dip.

$\frac{S H}{I_{30}}-\frac{N H}{D \cdot C \cdot 171}=$	Needle. No. 5 .	Needle. No. 6.	Needle. No. 7.
	$+16$	-19	-0.4
	$+37$	-I'I	+10
	+ Io	+0.2	$+16$
$\frac{S H}{D . C \cdot 171}-\frac{N H}{I_{30}}=$	Mean $=\mathrm{x}=+2 \cdot 1$	-0.9	+o. 7
	-2.3	+0.1	$+50$
	-3.7	$0 \cdot 0$	+3.3
	-2.0	-14	+34
Then $\quad \begin{aligned} & x=s+i \\ & x_{1}=s-i\end{aligned}$	Mean= $\mathrm{x}_{1}=-2 \cdot 7$	-0.4	+3.9
	where	$\begin{aligned} & s=S H-N H \\ & i=I_{30}-D . C .1_{71} \end{aligned}$	
	Needle No. 5 .	Needle No 6.	Needle No. 7.
$\therefore \quad \mathrm{SH}-\mathrm{NH}=$	$-0^{\prime} 3$	-0.6	$+2.3$
$\mathrm{I}_{30}-$ D. C. ${ }_{171}=$	$+2^{\prime \prime} 4$	-0.3	-1.6

From the site errors given by the various needles it is evident that needles Nos. 5 and 6 give fairly good results, needle No. 7 is evidently unreliable. Needle No. 6 is practically in accord with the Dehra standard when the dip is in the neighbourhood of 44°.

$$
\begin{aligned}
& \text { Abstract of comparison in declination. } \\
& \frac{\mathrm{SH}}{17}-\frac{\mathrm{NH}}{10}=\quad+0.4
\end{aligned}
$$

$$
\begin{array}{rr}
\frac{\mathrm{SH}}{10}-\frac{\mathrm{NH}}{17}= & -0.5 \\
& 0.5 \\
& -0.2 \\
\mathrm{SH}-\mathrm{NH}= & M \text { ean }-0.4 \\
17-10= & +0^{\prime} 2 \\
& +0^{\prime} 6
\end{array}
$$

The magnetometers are thus in close agreement.
As many observations of declination had been taken with the compass attachment of the dip circle this was also compared. The result is given below.

or adopting the difference $\mathrm{SH}-\mathrm{N}^{\mathrm{H}}=+\mathrm{o}^{\prime} 2$ the difference becomes
D. C. 17 I compass $-17=+1^{\prime} 5$

Comparison in H.F.
Below is an abstract of the comparisons in horizontal force. The observations with Dehra Dún standard have been computed with the mean m_{0} and mean P_{r} derived from the values obtained during the comparisons: these values accord well inter se and agree with the mean values before and after the comparison.

With the Dehra standard deflections were observed at $22.5,30$ and 40 cms ., but the value of $\frac{\mathrm{m}}{\mathrm{H}}$ used is that derived from the observations at 22.5 cms . only. Mr. Sowers observed at 30 and 40 cms . only, the mean value of $\frac{\mathrm{m}}{\mathrm{H}}$ at these distances being used to find H .

As the magnetic moment of his magnet was very low the angle of deflection at 40 cms . was small and consequently the probable error of observation large.

The mean times of observations were not strictly synchronous and the results with the Dehra standard have therefore been reduced to the mean times of observation with No. 10 by means of the magnetograph curves.

The base lines deduced from the observations with No. 17 in the northern and southern houses are identical, showing that there is no site difference: the comparisons of the field instruments has frequently given the same result.

The values of H. F. for 17 have therefore been deduced from the magnetograph curves using the above base lines found from the series of comparative observations : errors of observation are thus to a certain extent eliminated.

Abstract of comparison in H.F.		
	arson in H.	Difference.
S H	N H	
17	10	(1) -(2)
(1)	(2)	= X
-33289 C. G. S.	-33250 C. G. S.	-3r
214	256	42
204	244	40
204	242	$\cdot 38$
216	233	17
215	260	45
Mean $=-39 \gamma$		

$\frac{\mathrm{SH}}{10}$	$\frac{\mathrm{NH}}{17}$	$(1)-(2)$
(x)	(2)	$=\mathrm{X}_{1}$
33206	33183	+23
228	188	40
218	200	18
240	203	37
270	233	37
292	237	55
194	172	22
224	176	48
		Mean $=+37 r$

Whence $\mathrm{SH}-\mathrm{NH}=-\boldsymbol{:} \boldsymbol{y}$.

$$
17-10=-38 y .
$$

The accordance of the site difference with that found above shows that the resulting difference of instruments is probably fairly correct.

The correction to No. 17 for the Q term by using $\left(1+\frac{P}{r^{2}}+\frac{Q}{\left.r^{4}-\right)^{-1}}\right.$ for $\left(1+\frac{\mathrm{P}}{\mathrm{r}^{2}}\right)^{-1}$ amounts to $+30 \gamma$: the latest determination of $\log \pi^{2} \mathrm{~K}$ for No. 17 (in September (909) gives a value 3.41495 as compared with the accepted value 341579 ; the correction for the new value is -32γ.

The difference then becomes $17-10=-40 \gamma$.
No. 10 requires a correction to reduce its indications to the Carnegie Institution standard : this will be determined when the instruments reach Washington.

It is hoped that Mr. Sowers will be able to compare his instruments at Kew en route to enable a further determination of the difference of the Dehra standard from Kew to be made. The comparison originally made was unsatisfactory for several reasons, and has never been repeated.
(f) Comparison of instruments with the standards in 1908.-The following abstract gives the differences of the survey instruments from the standards in 1908. The instruments were compared at the beginning and end of the field season.

Comparison of instruments with the standard in declination and H.F.

Magnetometer and Magnet.		Declination.		Horizontal force.	
		End of field	Beginning of	End ol field	Beginning of
$17-$,	,	$\boldsymbol{\gamma}$	\boldsymbol{r}
	fi(2A)	00°	+0.8	-27	-18
	3 (3A)	-0.1	$+1.3$	-1	+18
	4 (4 A)	-0.6	+0.6	-16	- 6
	5 (5A)	-0'4	+ r 0	-8	- 1
	6 (6 A)	+0.1	$+17$	-29	-24
	(10(10)	+0.1	$+0.7$	+2	+12

Comparison of dip circles with the standard (Inductor No. 30).

(g) Values of the distribution co-efficients $P_{r, 0}$ and $P_{0,3}$ for field instru-ments.-The table below gives the values of P_{r}, and $P_{a, s}$ for the field magnets in 1908.09.

There was a considerable change in No. I during the journey from the field to Dehra Dún. Similar changes have been previously noticed on the journeys to and from the field: they are probably caused by the magnets being subjected to vibration and jolting for many hours continuously.

Numbers of Magnetometers.	P. from 22.5 and 30 cms .					P. FROM 30 and 40 cms .					Remaris.
1	7•49	7.48	64	9		9'52	9*44	138	35	103	From 14th Novem ber 1908 to $21 s$ February 1909.
2	7.09	7-09	6	...	6	$9 \cdot 29$	9.29	10	\cdots	10	From 24th Febru ary 1909 to 27th Fiebruary inog.
3	6.13	6.14	29	1	28	742	7.44	45	10	35	
4	758	7.58	73	\cdots	73	877	8.75	113	30	83	
5	7.27	7.27	83	\cdots	83	$8 \cdot 04$	8.03	96	II	85	
6	7.84	7.85	40	1	39	790	7.87	50	4	46	
ro	5.77	576	4^{1}	4	37	7.26	734	77	27	50	

(h) Programme for the ensuing field season.-During the field season 1909-Io four field detachments will be employed.

Two of these have been allotted to the area lying between Lat. $16^{\circ}-19^{\circ}$ and Long. $73^{\circ}-78^{\circ}$. Observations repeated at four old field stations in two groups in this area revealed an abnormal secular change in H. F., the values given by one group being the largest minus values yet found in India : the repeat stations near this area gave small + and - values, with a view to determining the limits of this area of abnormal change, a considerable number of old stations will
be revisited and in addition certain anomalous districts will be surveyed in detail. One of these detachments will in addition investigate some abnormal values in the Narbada Valley about Lat. 22° Long. $76 \frac{1}{2}^{\circ}$.

A third detachment will be employed in detail survey in two districts of Central India and will be transferred at the end of January to the Andamans where observations will be taken along the coast line. It is hoped that this detachment will be able in addition to observe at two or three islands of the Nicobar group thus affording a valuable connecting link with the magnetic survey of Sumatra.

The fourth detachment will work along the outer ranges of the Himalayas.
The two imperial officers will inspect and take comparative observations at the survey base stations : they will observe at 22 repeat stations and also at a number of old field stations as time permits.

The computing section in Dehra Dún will continue the reduction of the field results in addition to its normal work of computing and tabulating the base station results.
(i) Results published in this report.-A table showing the approximate preliminary values (uncorrected) at the field and repeat stations in 1908-09 is appended (see Tables) together with an index chart showing all stations of observations to date. The detail survey areas are hachured, the scale of the map being too small to show the individual stations easily.

The tabulations of the results obtained at Dehra Dún, Barrackpore, Toungoo and Kodaiḱ́nal observatories are published for 1908.

PART II.
The Magnetic Observatories in 1908.09.
A. Dehra Dún Observatory.
B. Barrackpore "
C. Toungoo "
D. Kodaikánal „

A.-Dehra Dún Observatory.

(a) General remarks on working.
(b) Mean values of H.F. and declination constants.
(c) Mean values of base lines.
(d) Mean scale value and temperature range in 1908.
(e) Mean monthly values of magnetic elements ard secular change, in 1go7-o8.
(a) General remarks on working.-The observatory remained in charge of Surveyor K. K. Dutta throughout the year under report.

The magnetographs continued to give good results until work was unavoidably stopped by water flooding the underground room during the heavy rains of August last. It was found impossible to cope with the inrush of water and finally on August $\mathbf{1}_{5}$ th, it was deemed advisable to dismount the self-registering instruments.

The H. F. and declination magnetographs had been working since January 1903 with only minor interruptions while the V.F. instrument was erected in September 1905. The magnetographs werere-erected ori September inth and \mathbf{r} th, but the break in the continuity of the records is a great misfortune.

The total loss of record was from August 1_{3} th to September 14 th, inclusive.
In the Narrative Report of $1902-03$ an account is given of the measures taken to obviate a recurrence of the flooding of the observatory in the autumn of 1901, but the experience of the past few years has shown that the hopes then expressed were unduly optimistic.

The rainy season has always been a period of anxiety：in 1904 and 1906 water entered the magnetograph room，in sufficient volume in the former year to stop the working：in 1905 and igo7，however，no trouble was experienced，but the rainfall was less than the normal ；in 1908 also though the total rainfall was heavy the room remained practically dry，but there was no prolonged period of heavy rain as in the present year．The cause of the trouble seems to be that after three or four days＇heavy rain the subsoil becomes waterlogged，water increases in the catchment pit faster than it can be pumped out，and the walls and floor of the observatory are subjected to a head of 10 feet or more pressure， which tiney are ill－calculated to resist．Pumping with two pumps had been proceeding day and night for more than a week before the instruments were removed，yet at the time of their removal the water had risen to within an inch of the top of the driving clock pillar，which later on the same day was sub－ merged：at the time the water level in the catchment pit was in feet above the floor level of the building．

The question remains what measures should be taken to avoid further trouble．
There are two alternatives ：either water should be prevented from entering the building altogether，or if this is regarded as unavoidable adequate means should be provided for coping with the influx．

Before considering the second of these alternatives the walls and floor of the observatory and surrounding passage will be lined with neat Portland cement plaster which will，it is hoped，make the building watertight：this work will involve little interference with the recording instruments．
（b）Mean values of constants．－The following table gives the monthly mean values of the magnetic collimation，the distribution co－efficients $P_{1,2}$ and $P_{0 . j}$ and the moment（ m_{0} ）of the magnet No． 17 （the survey standard）during 1908.

Mean values of the constants of the Magnetometer No． 17.

Months， 1908.	Declina－TIonCon．Stants．MeanMagneticColima．tion．	HORIZONTAL FORCE CONSTANTS．						
		Mean Value of P＇s．；				Mean value of M．	Accepted value of M．	Remaris．
		$\mathrm{P}_{1}{ }^{2}$ ．	$\mathrm{P}_{3} \mathbf{\prime}$ ．	$\left.\begin{gathered} \text { Accept- } \\ \text { ed } \\ \text { value of } \\ \mathbf{P}_{1}: 50 \end{gathered} \right\rvert\,$	$\begin{aligned} & \text { Accept- } \\ & \text { ed } \\ & \text { value of } \\ & P_{9,2} . \end{aligned}$			
January		741	7＇79			$911 / 82$	91182	
February ．	－ $\begin{array}{lll}-8 & 32\end{array}$	747	795			911.82	91.82	
March－．	－ $\begin{array}{lll}-8 & 32\end{array}$	7＇1	8.05			91132	911＇62	
April •－	－－8 31	742	796			911＇39	91162 （1）	（1）By chronograph in
May ．－．	－-920	716	744			9113932；	911．62	April．
June ．．．	－－9 22	7124	738			89371 $89+42$		（2）6th May， The values are fuctuat－
July	$\longrightarrow \quad 28$	7：27	$7{ }^{49}$	荿	${ }_{\text {¢ }}^{\text {¢ }}$	$8 \mathrm{HV72}^{2}$		ing．hence M is rejec－
August ．	－9 40			吉 E	岩盛			Iyth August．
August．	－9 40	716	715	－	8응	894×57		
September ．	－-928	724	753	7	\％	894．54，3）	$894.4{ }^{8}$	（3）From 26th August．
October－	－9 34	$7 \cdot 17$	7 ＇67			894.56	89448	
November	$\longrightarrow 31$	720	$7{ }^{\text {² }} 5$			894.61	$894 \cdot 48$	
December ．	－9 31	7＇17	7×5			80441		
						$894 * 8(4)$	894.48	（4） By chronograph is December．

（c）Mean values of base lines．－The table below gives the mean values of the H．F．and declination base lines actually used．The base lines of the V．F． magnetograph are not given as there have been frequent changes．

Dehra Dún Observatory.

The abstract of the base line value of the Magnetographs in 1908.

Months, 1908.	Declimation.		Horizontal Force.	
	Mean value of Base line.	Remarks.	Mean value of Base line.	Rimaris.
January .	$140^{\prime} 6$	$\left\{\begin{array}{l}33028 \\ \\ 33030\end{array}\right.$	The Base lines are reduced to $27^{\circ} \mathrm{c}$. To compare these with previous years' $25 y$ is to be subtracted from the present values. (1) to 2oth.
February .	40'7	$\cdot 33027$	(2) from 2 ist to end.
March	$40 \cdot 6$	'33024	
April	$40 \cdot 6$	'33026	
May . -	$40 \cdot 6$	$\cdot 33026$	
June . -	$40 \cdot 3$	'33025	As the M o! magnet 17 was fluctuating and had to be rejected the base lines for June, July and August could not be determined and have been found by interpolation between May and September.
July . .	$40^{\circ} 0$. ${ }^{\text {. }}$.	-33025	
August .	$40^{\circ} 2$	33025	
September	$40^{\circ} 7$	to 12th October.	$\left\{\begin{array}{c}33024 \\ a\end{array}\right.$	to 25 th. from 26th to 30th.
October .	411	from 15th October	$\left\{\begin{array}{c} 33016 \\ a \end{array}\right.$	to 6 th November. from 7th to roth.
November .	411	333025	from isth.
December .	41'1	333025	

Nots. $-a=$ Base line value assumed to be varying uniformly. The values for individual days are found by interpolation.
(d) Mean scale value and temperature range.-The mean scale value of the H. F. magnetograph for 1908 was $4 \cdot 12 \gamma$ for an ordinate of $\mathrm{o}^{\prime \prime} \cdot 04$ with limiting values of $4^{\circ} 09$ and $4^{\circ} 14$. The mean temperature of the H. F. magnetograph was $27^{\circ} 10 \mathrm{C}$ with a maximum of $27^{\circ}{ }^{\circ} 40$ in December and a minimum of $26^{\circ} .62$ in January.

The scale value of the V. F. magnetograph varied from 4.70 to 4.90 : the mean temperature was $80^{\circ} 45 \mathrm{~F}$. with a minimum of $79^{\prime} 7$ in January and a maximum of $8 \mathrm{I}^{\circ} 2$ in July.

The temperatures of reduction are $27^{\circ} \mathrm{C}$ for the $\mathrm{H} . \mathrm{F} ., 81^{\circ} \mathrm{F}$. for the V. F. instrument.
(e) Mean monthly values and secular change.-The following table gives the mean monthly values of the magnetic elements with the secular change for 1907.08 deduced therefrom.

Dehra Dün Observatory.

Secular change.

Months.	Horizontal Force 33000+			Declination E. $\mathbf{2}^{\circ}+$			$\begin{aligned} & \text { DıP } \\ & 43^{\circ}+ \end{aligned}$			Vertical Fores $31000+$			Remarks.
	Values 1907.	Values 1908.	Secular change, 1907\%8.	Values 1907.	Values 1908.	Secular change, 1907-08.	$\begin{aligned} & \text { Values } \\ & 1907 . \end{aligned}$	Values 1908.	Secular change, 1907-08.	Values 1907.	Values 1908.	Secular change, 1907-08.	
	C. G. S.	C. G. S.	$\boldsymbol{\gamma}$,	,	,	,	,	,	C. G. S	C. G. S.	$\boldsymbol{\gamma}$	
January	336	306	-30	39°	37.4	-1.6	341	$38 \cdot 7$	+4.6	711	767	+ 56	
February	333	303	-30	387	37.5	-12	35.8	295	+37	738	779	+41	
March	322	299	-23	39.2	$37 \cdot 3$	-3:	$33 \cdot 7$	40:1	+6.4	690	785	+95	
April .	335	$2 ¢ 2$	-43	38.6	37.2	-1.4	33.9	41.6	+77	706	807	+101	
May .	330	297	-33	38.5	37.0	- 15	35.3	41.8	+6.5	725	$8: 5$	+90	
Juat .	333	296	-37	$3{ }^{80}$	36.4	-1.6	35.6	42.5	+6.9	735	828	+93	
July .	322	300	-22	$3^{8 \cdot 1}$	36.1	$\rightarrow 0$	36.4	42.1	+57	739	824	+85	
August	325	296	-29	379	36.0	-19	36.4	42'8	+64	742	833	+91	
September	323	273	-50	378	$36 \cdot 5$	-1'3	37.1	44:	+7\%	752	836	+8+	
October	310	280	-30	378	$36 \cdot 3$	-15	38.0	$44 \cdot 3$	+6'3	758	845	+87	
November	309	283	-26	37.5	36.5	-10	379	45°	+71	755	861	+ 106	
December	305	286	-19	37.5	$36 \cdot 3$	-1.2	387	443	+56	765	850	+85	
mbane	324	293	-si	38.2	36.7	-1.5	36.1	42'2	+6.2	735	819	+84	

> B.-Barrackpore Observatory.
(a) General remarks on working.
(b) Mean values of H. F. and declination constants.
(c) Mean values of base lines.
(d) Mean scale values and temperature range.
(d) Mean monthly values of magnetic elements and secular change, 1907.08 .
(a) General remarks on woorking. - The observatory remained in charge of K. N. Mukerji throughout the year, with the exception of $2 \frac{1}{2}$ months when Abdul Majid was in charge during the former's absence on leave.

The magnetographs were opened and cleaned and a new base mirror was fitted to the declination magnetograph in December 1908. All the instruments have given good results throughout the year.
(b) Mean values of constants.-The following table gives the monthly mean values of magnetic collimation, the distribution co-efficients $P_{1 .,}$ and
$\mathrm{P}_{2 \cdot 9}$ and the magnetic moment (m_{o}) of the magnet No. 20 for 1908 . It will be seen that the value of m_{0} has changed but little, which is satisfactory.

Mean values of the constants of the Magnetometer No. 20.

Months, 1908.	$\left\|\begin{array}{c} \text { Declina- } \\ \text { TION Con- } \\ \text { STANTS. } \end{array}\right\|$	HORIZONTAL FORCE CONSTANTS.						Remarrs.
	Mean Magnetic Collimation.	Mean value of P's.				Mean value of M.	Accepted mean value of M.	
		P1.g.	P_{2}, ${ }^{\text {, }}$	Accepted values of P_{1+2}.	$\left\|\begin{array}{c} \text { Accept- } \\ \text { ed } \\ \text { values of } \\ \mathbf{P}_{\mathrm{g}, \mathrm{z}} \end{array}\right\|$			
	, 7							
January . .	-7 12	6.86	7'98			94913	$949 \cdot 18$	
February . .	. -714	6.79	$8 \cdot 05$			949'20	949.18	
March .		6.80	$7 \cdot 97$			$949^{\prime} 19$	949.18	
April .	$\cdot \left\lvert\, \begin{array}{ll}-7 & 12\end{array}\right.$	$6 \cdot 76$	$8 \cdot 03$			949.02	$948 \cdot 97$	
May . .	$\cdot \left\lvert\, \begin{array}{ll}-7 & 15\end{array}\right.$	$6 \cdot 71$	8.00			$948 \cdot 92$	948.97	To 6th June.
June - .	$\cdot \left\lvert\, \begin{array}{ll}-7 & 14\end{array}\right.$	6.82	$8 \cdot 08$	$\begin{aligned} & \text { 宿 } \\ & \stackrel{y}{3} \end{aligned}$	皆	$948 \cdot 70$	948.69	
July . -	.-711	6.77	7'99	$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \end{aligned}$	-	$948 \cdot 67$	948.69	
August . .	$\cdot \mid-712$	6.87	8.01			$948 \cdot 68$	$948 \cdot 69$	
September . .	.-711	$6 \cdot 73$	$8 \cdot 07$			$948 \cdot 71$	$948 \cdot 69$	
October	. -716	6.81	789			948'90	$948 \cdot 88$	
November . .	. $-7 \quad 17$	673	$7 \cdot 89$			$948 \cdot 87$	948'68	
December .	. $-7 \quad 17$	6.60	8.04			$948 \cdot 87$	$948^{\prime} 88$	

(c) Mean values of base lines.-The table below gives the mean monthly values of the H. F. and declination base lines for 1908.

The V. F. base lines are not shown as there have been frequent changes.
Mean base line values of the Magnetographs in 1908.

Nota-a=Base line value assumed to be varying uniformly. The values for individual days are found by inter polation.

Mean base line values of the Masnetographs in 1908-contd.

Noтв. $-a=$ Base line value assumed to be varying uniformly. Tine values for individual days are found by interpolation.
(d) Mean scale va'ues and temperature range. -The mean scale value of the H. F. magnetograph for 1908 was 4.85γ with limiting values of $4 \cdot 81$ and 4.89 : the mean temperature was $31^{\circ} .9 \mathrm{C}$ with maxima of $33^{\circ} .6$ in May, June and July and a minimum of 28° in December.

The mean scale value of the V.F. magnetograph was 4.33γ the mean monthly values ranging from 4.50 to 4.56 : the mean temperature for the year was $89^{\circ} .6 \mathrm{~F}$, with a maximum of $93^{\circ} 1$ in June and a minimum of $82^{\circ} .6$ in December.

The selected mean temperatures are $31^{\circ} \mathrm{C}$ for the H. F. magnetograph, $89^{\circ} \mathrm{F}$ for the V. F.
(c) Mean monthly values and secular change.-The following table gives the mean monthiy values of the magnetic elements in 1907 and 1908 and the secular change deduced therefrom.

Barrackpore Observatory.

Secular change.

Months.	Hurizontal Femce. $\cdot 37000+$.			$\begin{gathered} \text { Diclinati.'N } \\ \text { E1 }^{\circ}+\text {. } \end{gathered}$			$\begin{gathered} D_{1 P} \\ 30^{\circ}+. \end{gathered}$			Vertical Force. -21000 .			REmatisa
	Va'ues 1907.	Values 1908	Secular change, 1907~8	Values 1907.	Values 1908.	Secular change, 1907-08.	Values 1907.	Values 1908.	Secular change, 1907-08.	Values 1907.	Values 190d.	Secular change, 1407-08	
	C. G. S.C. G. S.			,	,	,	,	,	,	C. G. S.	C. G. S.	$\boldsymbol{\gamma}$	
Japuary	281	301	+ 20	120	76	-4.4	27.6	$32^{\circ} 0$	+44	925	1000	+75	
February .	280	305	+ 25	1%	$7 \cdot 4$	$-3 \cdot 6$	$30 \cdot 5$	33\%	- $2 \cdot 5$	967	1017	+50	
March	281	306	+ 25	11.2	6.8	-44	28.0	32"9	$+49$	931	1018	$+87$	
April .	297	293	-4	10.6	$6 \cdot 4$	-4.2	28.7	$3+6$	+59	951	1034	+83	
May .	289	301	+12	10.3	6.4	-3.9	298	$34: 2$	+44	961	1034	+73	
Jone	390	300	+10	$9 \cdot 8$	57	-4'1	29.8	34×5	+47	962	1038	+76	
July .	283	301	$+18$	97	56	-4.	306	343	+37	970	1034	+64	
Augast	293	294	$+1$	94	5.1	-4.3	30.8	35.1	+43	978	1642	$+64$	
Seplember .	293	275	-18	9%	48	-4.2	31°	33^{*}	+ 5.1	982	1045	+63	
October	284	294	+ 10	$8 \cdot 6$	$4 \cdot 3$	-4*3	31.8	$35 \cdot 8$	+ 4°	988	1053	$+65$	
November .	890	259	+9	84	$3 \cdot 8$	-46	318	36.4	$+46$	991	1064	+73	
December .	290	308	+18	7'9	3.6	-4.3	32.1	36.3	$+4^{\prime 2}$	996	1068	+72	
Means	288	298	+11	9.8	$5 \cdot 6$	-42	30.2	34.6	+4*4	967	1037	+ 7°	

C. -Toungoo Observatory.

(a) Genetal remarks on working.
(b) Mean values of H. F. and declination constants.
(c) Mean monthly values of bage lines.
(a) Mean wcale values and temperature range.
(e) Mean monthly values of the magnetic elements and secular change, 1907-08.
(a) General remarks on working.-The observatory has remained in charge of Shri Dhar throughout the year.

The V. F. magnetograph was opened up and cleaned in December 1908. The temperature compensation arm was inadvertently moved in the process and a new determination of the temperature co-efficient was made. The value found was - 2° or per $+1^{\circ} \mathrm{F}$.

The torsion head of the H. F. magnetograph was turned at the same time increasing the value of the base line by about 200%.
(b) Mean values of H.F. and declination constants.-The following table gives the monthly mean values of the magnetic collimation, the distribution co-efficients P_{1}, and $P_{2,}$, and the magnetic moment m_{0} for 1908 . A new magnet No. 19A was used from April 1908 which explains the changes in the constants.

Mean values of the constants of the Magnetometer No. 19.

(c) Mean monthly values of base lines.-The table below gives the monthly mean values of the H. F. and declination base lines.

There has been a progressive fall in the base line of the H. F. magnetograph.

The V. F. base lines are not given as there have been frequent changes.

Toungoo Observatory.

The abstract of the base line value of the Magnetographs in 1908.

Nota-- Bace line value assumed to be varying uniformly. The values for individual dajs anofound by interpolation.

Toungoo Observatory-contd.

Note $a=$ Base line value assumed to be varying uniformly. The values for individual days are found by interpolation.
(d) Mean scale values and temperature range. H. F. magnetograph.The mean scale value for 1908 was $5^{\prime} 5^{2} \gamma$ with limiting values of 5.50 and 5.53 . The mean temperature for the year was $89^{\circ} \cdot 1 \mathrm{C}$: the maximum monthly mean temperature was $89^{\circ} 3$ in March, the minimum $89^{\circ}{ }^{\circ}$ in January, July, September.
V. F. magnetograph.-The mean scale value was $55^{1} \gamma$ for the first quarter of the year and subsequently $5^{\circ} \circ 4 \gamma$: the mean temperature for the year was $88^{\circ} \cdot 7$ F. with a maximum of $89^{\circ} \circ$ in May a minimum of $88^{\circ} 4$ in December.

The selected mean temperature is $89^{\circ} \mathrm{F}$. for both instruments.
(e) Mean monthly values of the magnetic elements and secular change, 190708 .-The following table gives the mean monthly values of the magnetic elements year 1907 and 1908 with the secular change deduced therefrom.

The values of H. F. and V. F. from July 1907 are preliminary only as the corrections to be applied to magnets 5 A and 19 A to reduce them to the original magnet No. 19 have not yet been finally settled.

Toungoo Observatory.

Secular change.
e.

Mor:t.s.	Horizontal force. '38000 + .			Declination. $\mathrm{EO}^{\circ}+$.			$\begin{aligned} & \text { DIP. } \\ & 22^{\circ}+. \end{aligned}$			Vertical force. - $10000+$.			Rimanis.
	Values 1907.	Values 1908.	Secular change, 1907.08.	Values 1907.	Values 1908.	Secular change, 1907-08.	Values 1907.	Values 1908.	Secular change, 1907-08.	$\begin{aligned} & \text { Values } \\ & 1907 . \end{aligned}$	$\begin{aligned} & \text { Values } \\ & 1908 . \end{aligned}$	Secular change, 1907-08.	
	C. G. S.	C. G. S.	$\boldsymbol{\gamma}$,	,	,	,	,	,	C. G. S.	C. G. S.	$\boldsymbol{\gamma}$	
January	718	766	$+48$	415	36.7	-4.8	59.4	$61 \cdot 1$	$+17$	427	469	+42	
February	709	767	+ 58	41%	36.3	-47	62.5	60.8	-17	464	466	+02	
March	732	769	+37	40.4	35.8	-4.6	\%17	614	+0.3	456	475	+ 19	
Aprin.	748	758	$+10$	40%	35.1	-4.9	61.5	$63^{\prime \prime} 1$	$+16$	467	493	+ 26	
May .	740	763	+23	39.4	$35 \cdot 5$	-3.9	62.1	619	-0.2	472	479	+07	
June	752	762	$+10$	393	34.5	-4.8	${ }_{61} \cdot 2$	61.8	+ 0.6	465	477	$+12$	
July .	746	766	$+20$	38.8	34*2	-4.6	61.8	617	-0"1	470	477	+07	
Autust	761	762	$+01$	38.9	33.6	-53	$62^{\circ} \mathrm{O}$	61.5	-0.5	480	473	-07	
Septernber	771	748	-23	$38 \cdot 3$	$33 \cdot 5$	- 4 '8	615	62.2	$+0.7$	477	477	∞	
October	782	764	-18	$3{ }^{51}$	320	-51	$61 \cdot 3$	627	$+1 \cdot 5$	478	490	+12	
Navenber	793	763	$\rightarrow 9$	379	32.5	-54	62°	63.3	$+\mathrm{I}^{2}$	493	496	+03	
December	802	764	-39	37.4	32.6	-4:8	61.8	614	-0.4	494	473	-21	
Meame	754	763	+ 8	39'3	34.4	-48	61.5	619	+ 0.4	470	479	+09	

> D.-Koduikánal Observatory.
(a) General remarks on working
(b) Mean values of H. F. and declination constants.
(c) Mean values of base lines.
(d) Mean scale values and teniperalure range.
(e) Mean monthly value's of magnetic elements and secular change. 1907.08.
(a) General remarks on working. - The observatory remained in charge of Surveyor Kamaswami Iyengar thrcughout the year under report.

The magnetographs gave good results througnout the year. Thanks are due to the Director, Solar Physics Observatory, for his cordial assistance in all matters concerning the magnetic work.
(b) Mean values of constants. -The table below gives the monthly mean values of the magnetic collimation, the distribution co-efficients $P_{1,}$ and $P_{2, s}$ and the magnetic moment (m_{0}) of magnet No. 16 for 1903.

The low observed values of m_{0} in August and September are incorrect -they are the result of personal error on the part of a second observer who held charge of the observatory while the permanent incumbent was on leave.

Mean values of the constants of the Marnetometer No. 16.

(c) Mean values of base lines.-The annexed table shows the base lines of the H. F. and declination magnetographs. The declination base line has been extremely steady while the H. F. base line shows a slight fall throughout.

The base lines of the V. F. instrument are not shown as the balance of the magnet required adjustment on several occasions.

Kodaikánal Observatory.

The abstract of the base line value of the Magnetographs in 1908.

Nots. $-a \approx$ Base line value assamed to be varying uniformly. The values for individual degs are found by interpolation.
(d) Mean scale values and temperature range. H. F. magnetograph.The mean scale value for the year was $6.14 y$ with a range from 6.13 to 6.15 : the mean temperature was $19^{\circ} 1 \mathrm{C}$ the monthly mean values varying from $19^{\circ} \mathrm{O}$ to $19^{\circ} \cdot 2$. The selected mean temperature is $19^{\circ} \circ \mathrm{C}$.
V. F. magnetograph.-The mean scale value was $4^{\circ} 6 \varsigma \gamma$ to May and subsequently $5^{\circ} 9 \rho \gamma$. The mean temperature for the year was $66^{\circ}{ }_{5} \mathrm{~F}$. with a minimum of $66^{\circ} \mathrm{I}$ in January and a maximum of $66^{\circ} 9$ in June.

The selected mean temperatures are $19^{\circ} \mathrm{C}$ and $66^{\circ} \mathrm{F}$.
(e) Mean munthly values and secular change.-The following table gives the mean monthly values of the magnetic elements in 1907 and 1908 with the secular change deduced therefrom.

Kodaikánal Observatory.

Secular change.

Months.	Horizontal force. '37000+.			Declination. W $\mathrm{O}^{\circ}+$.			$\begin{aligned} & \text { DIP } \\ & 3^{\circ}+. \end{aligned}$			Vertical Force -02000 +			
	Values 1907.	Values 1909.	Secular change, 1907-08.	Values 1907.	Values	Secular change, 1907-08.	Values 1907.	Values 1908.	Secular change. 1907-08.	Values 1907.	Values 1900.	Secular change, 1907-08.	Remarks.
	C. G. S.	C. G. S.		,	,	,	,	1	,	C. G. S.	C.G.S.	$\boldsymbol{\gamma}$	
Japuary	426	436	$+10$	38.8	43^{2}	+4*4	258	30.5	+47	243	294	+51	
February	415	434	+19	39°	43'7	$+47$	27.3	31%	$+3.8$	258	300	+42	
March	423	439	+15	$39^{\circ} 2$	44.4	+52	$24^{\prime 1}$	311	+7\%	224	302	+78	
April ,	439	430	~ 9	39.9	$44^{\circ} 3$	+4.4	267	317	+5\%	253	308	+55	
May .	429	435	+ 06	$40^{\circ} 2$	$44^{\prime} 6$	+4.4	$26 \cdot 3$	319	$+56$	249	310	+61	
June	430	431	+01	$40 \cdot 5$	$45 \cdot 3$	+48	277	34\%	+6.3	264	332	+68	
July	423	438	+ 15	$40^{\circ} 7$	45.4	+47	27.9	339	46.0	265	332	+66	
August	430	431	+01	41'1	4611	+ 5 \%	28.3	$34 \cdot 2$	+59	270	335	+65	
September	43^{8}	424	-14	417	$46 \cdot 3$	+46	274	34]3	+6.9	261	336	+75	
October	436	437	+01	418	46.6	+4.8	277	34*	+6.3	265	333	+68	
Novernber	437	430	-07	42.4	47'2	+4.8	294	351	+5'7	283	345	+62	
December	440	439	$\longrightarrow 1$	42.8	476	+4:8	29%	36.3	+6.6	286	358	+72	
Means	431	434	+ 3	$40 \% 7$	45'4	$+47$	27.4	$33 \cdot 2$	+ $5 \cdot 8$	260	334	$+64$	

Part III.

Tables of Results.

INDEX TO TABLES.

Page.
A.-Mean values of the magnelic elements at Dehra Dún, Barrackpore, Toungoo and Kodaikánal observatories for 1908
B.-Classification of curves and dates of magnetic disturbances in 1908 24
C.-Results of Magnetic Observations at field and repeat stations during 1908-09 . . . 35
D.-Tables of results at Dehra Dún • 31
E. - Ditto Barrackpore 41
F.- Ditto Toungoo • 5
G.- Ditto Kodaikánal 6r

For each observatory the following tables are given :-

1. Hourly means (corrected for temperature) of declination, horizontal force, vertical force and dip from 5 selected quiet days per month.
2. Diurnal inequality of each deduced from \mathbf{t}.

Table A.
Mean values of the magnetic elements at the Observatories in 8908.

Observatory,	Latitude.	Longitude.	Declination.	Horizontal Force. C. G. S.	Vertical Force. C. G. 5 .	Dip.
	, "	- '	- ,			0.
Dehra Dún	. 301919 N	$78 \quad 319 \mathrm{E}$	236.7 E	-33293	31819	43 42:3 N
Bairack pore	224629 ,	882139 "	1 57 "	37031	-2.038	$3034 \cdot 5$
Toungco	185545 "	$9627 \quad 3 \quad 1$	- 34.4 "	38763	-16479	23 20.0
Kodaikánal	, 101350 "	772746	$04.5+\mathrm{W}$	37434	${ }^{-02324}$	3 312\%

Abstract showing approximate magnetic values at stations observed at by No． 26 Party
during season， 1908 －09．

	Name of Station．	Survey	Latitude．	Longitude．	Dip．	Declination．	Harizontal Foice．	Rbmara
㛯							c．G．s．	
1215	Kyauktaw	38	205030	925840	2652	E 039	$\bigcirc \cdot 3818$	
1216	Paletwa	硨 8	211810	925140	2750	， 045	${ }^{\circ} \mathrm{O} 3807$	
1217	Kaletwa	＂	2144	924750	$28 \quad 39$	， 049	${ }^{\circ} \cdot 3798$	
1218	Kyaukpyu	3812	19260	933330	2358	， 035	${ }^{\circ} \cdot 3862$	
1219	Ramree	1 13	19550	9352 ○	2320	， 034	${ }^{\circ} \cdot 3882$	
1230	Cheduba	28	18510	93433°	2244	\％ 034	${ }^{\circ} \cdot 3882$	
1221	Sandoway	＂	182750	$9+22$	2153	＂ 032	${ }^{\circ} \cdot 3889$	
1222	Kyeintali	＂	18 o	942910	2056	， 029	$\bigcirc \cdot 3898$	
1223	Gwa	，	173520	943450	20	，－ 24	$\stackrel{\circ}{\circ} 907$	
1224	Bawmi	＂ 5	171830	943440	1922	， 025	－＇3912	
1225	Taseng	62	165420	942340	1827	\％ 023	－3915	
1226	Ngo－yon－kaung ．	1） 3	163020	94180	1733	， 020	$\bigcirc \cdot 3923$	䒼
1227	Ka－baung－hmau	，	155950	941640	$16 \quad 17$	， $0 \cdot 9$	${ }^{\circ} \cdot \mathbf{3 9 3 1}$	\％
1228	Labutta	＂ 5	16840	944520	1648	，${ }^{\circ} 3^{8}$	－＇3936	$\stackrel{5}{5}$
1229	Wakéma	6^{8}	1636	951010	1750	， 036	－ 3925	
1230	Mya－tha	＂ 3	161410	9517	17	， 024	$\bigcirc \cdot 3924$	${ }^{\text {E }}$
1231	Maubin	＂ 4	164420	95391	1813	\％ 024	$\bigcirc \cdot 3916$	E
1232	Pyaptn	＂ 5	161710	954050	1715	＂ 023	${ }^{\circ} \cdot 3925$	\％
1233	Kadon－kani	1 6	154640	951250	1617	＂ 019	${ }^{\circ} \cdot 3932$	年
1234	Yandoon	\％ 11	17250	9538 10	1855	， 027	－ 3925	
1235	Me－za－li－gon	1 12	175250	9514	2039	， 027	－ 3909	
1236	Petye	$\cdots 13$	181830	$95 \quad 820$	2133	\％ 029	${ }^{\circ} \cdot 3894$	
1237	Tabee	62 6	$183^{8} 20$	944020	$22 \quad 16$	， 032	${ }^{\circ} \cdot 3888$	
122^{8}	Taungup	\cdots	185140	941450	2242	， 033	$\bigcirc \cdot 384$	
1239	Mai	： 14	191710	948	2344	1035	${ }^{\circ} \cdot 38873$	
1240	Sakamau	＂ 15	193850	94 \％ 10	$24 \quad 23$	， 036	${ }^{\circ} \cdot 3863$	
1241	Thanbaya	$\frac{14}{4} 3$	16720	98210	$16 \quad 56$	－ 035	${ }^{\circ} \cdot 3936$	
1242	Kyunghaung	， 4	1532 10	981520	1537	， 0 31	－ 3942	
1243	Mi－tan	＂ 5	16 －	982630	1640	＂ 034	${ }^{\circ} \cdot 3938$	
124	Kyêndo	， 6	163550	＠8 350	1755	\％ 035	－ 3929	
1245	Mya－wadi	＂	164120	982950	18	－ 035	－3926	
1246	Amherst	8	16450	9734 －	1638	\％ 029	－ 3932	
1247	Anin	＂ 9	153940	9744	1541	\％ 026	${ }^{\circ} \cdot 3936$	
1248	Ye	， 10	151440	975	$14 \quad 52$	－ 031	${ }^{\circ} \cdot 3943$	
249	Myitta	H^{2}	14 to 50	982950	1229	\％ 03 zr	${ }^{\circ} \mathrm{O} 3955$	
1250	Gonnein Seik	＂	1341	$98{ }^{18} 50$	21	\％ 027	－ 3953	
${ }^{1251}$	Malue		13650	981940	10.12	－ $0^{\circ}{ }^{1}$	${ }^{\circ} \cdot 3975$	

Abstract showing approximate magnetic values at stations observed at by No. 26
Party during season, 1908-og-contd.

Abstract showing approximate magnetic values at stations observed at by No． 26 Party during scason，1908－og．－contd．

Detail Survey Stations．

	Name of Station．	Latitude．	Longitude．	Dip．	Declination．	Horizontal Force．	Remaris．
年		，＂	－	－ 1	－，	C．G．S．	
1 D	Mhow	22330	7545 o	30 I	E 049	0.3646	
2 D	Mánpur＊	222550	753640	2923	＂ 042	03670	
3 D	Gujri	221840	753040	$29 \quad 52$	， 10	$0 \cdot 3639$	
4D	Lunera－	222740	752520	302	＂ 052	0.3647	
5 D	Nimkhera	222610	751130	$29 \quad 57$	＂ 055	03648	
6D	Deola	$\begin{array}{llll}22 & 1.9 & 0\end{array}$	$75 \quad 5 \quad 30$	2929	＂ 135	$0 \cdot 3627$	
7 D	Liwáni ．	221850	751830	2943	＂I 4	0.3631	
8 D	Bákáner ．	22 11 10	$75 \quad 930$	2916	＂ 14	$0 \cdot 3629$	
9D	Dharmpuri	2290	75 21 10	283	W o 4	$0 \cdot 3886$	
roD	A	22.100	751930	$30 \quad 50$	E $\circ 3^{8}$	0.3532	
IID	1）B	22950	752040	3143	＂ 047	0.3485	
12D	＂C	$22 \quad 920$	752050	2950	＂ 046	0.3661	
13 D	Degáwa ．	22 10 10	752210	299	＂ 124	0.3618	
14D	Dasora	221050	752050	3124	＂ 113	0.3583	
150	Dhegda ．	221220	752150	298	， 058	0.3643	号
16D	Chota Piplia	22 II 20	751840	2926	＂ 052	0.3622	00
17 D	Khárpura	22910	751730	2935	＂ 049	$0 \cdot 3604$	$\underline{\square}$
18D	Mahápura	$\begin{array}{lll}22 & 8 & 40\end{array}$	751450	3051	＂ 043	035596	Σ
19D	Dédgaon ．	201030	751530	296	＊ 053	0.3714	E
20D	Baikhera ．	221210	751250	$28 \quad 52$	＂ 046	$0 \cdot 3667$	${ }_{0}^{\circ}$
21 D	Potwar	22820	75 11 30	3059	＂ 127	$0 \cdot 3562$	प
22D	Brahmangaon	2260	751650	$30 \quad 30$	＂ 056	0＇3597	号
23 D	Balgaon No． 1	22320	751720	30 II	＂ 032	0． 3459	．
24 D	Khurrampura	22110	752 I	2845	， 042	0．3649	
25 D	Thikri＊	22410	752410	2947	， 11	0.3604	
26D	Abáli ．．	22520	752050	3314	－ 044	0.3356	
27D	Chichili	22740	752350	$29 \quad 58$	， 110	0＇3668	
28D	Khal Ghát A	22830	$75 \quad 2710$	$31 \quad 12$	＂ 053	0.3578	
29 D	Dhámnod	221130	752750	$29 \quad 23$	＂ 110	$0 \cdot 3635$	
30 D	Regwân ．．	2260	752940	2733	110 18	03744	
31 D	Doláni－	22220	$75 \quad 2840$	$28 \quad 38$	， 0.31	0.3694	
32D	Dángri	2200	751440	$28 \quad 48$	＂ 038	$0 \cdot 3665$	
33D	Talwara	22440	751210	$30 \quad 52$	， 026	0.3583	
34D	Kirmoi－	22530	75850	3046	＂ 125	0.3633	
35D	Mundiakheri	22230	75810	318	， 112	$0 \cdot 3649$	
36D	Salkhera．	2154 10	$75 \quad 930$	314	， 118	－ 03556	
37D	Pipri ．	215710	751140	28 51	， 110	0.3663	
38 D	Danund	215320	$75 \quad 50$	284	＂ 122	003552	

Abstract showing approximate magnetic values at stations observed at by No. 26 Party during season, 1908-09-contd.

Detail Survey Stations.

NO. 26 PARTY (MAGNETIC).
Abstract showing approximate magnetic values at stations observed at by No. 26 Party during season, 1908-09.-contd.

Detail Survey Stations.

Abstract showing approximate magnetic values at stations observed at by No. 26 Patir during season, 1908-09-conald.

Detail Survey Stations.

Repeat Stations.

[^0]

DEHRA DÚN OBSERVATORY TABLES.

Howrly Means of the Declination as determined at Dehra Dutn from the selected quiet days in 1908.

Hoars	Mid.	1	2	3	4	5	6	7	8	9	10	${ }^{1}$	Noon.	13	14	15	16	17	${ }^{8}$	19	20	21	22	23	Mid.	Means.

Declination $\mathrm{Ez}^{\circ}{ }^{\circ}+$

					,		,	,		,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	-
January	$37 \cdot 4$	$37^{4} 4$. 37×3	373	37.2	37°	$37 \cdot 0$	37°	$37 \cdot 6$	$38 \cdot 3$	38.3	37.8	37'4	37.6	37'5	37'1	370	373	37%	$37 \cdot 5$	373	37'4	37'3	37.4	37%	37.4
February	37.6	37%	375	374	$37 \cdot 3$	$36 \cdot 9$	$36 \cdot 7$	$36 \cdot 5$	$37 \cdot 6$	387	391	$39^{\prime \prime}$	38.5	377	373	36.9	37'1	37.2	$37^{\prime 2}$	372	374	37.5	$37 \cdot 4$	375	37'5	37.5
March	375	37%	372	37'I	36.8	367	$36 \cdot 3$	377	39'1	400	39.6	38.0	$36 \cdot 2$	$35^{\circ} 2$	35'1	$35^{6} 6$	36.5	37' 1	$37^{*} 2$	$37 \cdot 1$	37°	372	$37^{\prime 2}$	37.3	37'3	$37^{\circ} 2$
October	$36 \cdot 8$	${ }_{3} 6.8$	$36 \cdot 7$	36.7	$36 \cdot 5$	364	36.4	373	$38 \cdot 3$	$38 \cdot 5$	37\%	$35 \cdot 5$	$33 \cdot 8$	33.3	34'2	$35 \cdot 6$	$36 \cdot 3$	36.4	$36 \cdot 3$	$36 \cdot 3$	$36 \cdot 3$	363	$36 \cdot 5$	$36 \cdot 6$	367	$36 \cdot 3$
November	367	367	36.6	$36 \cdot 5$	$36 \cdot 4$	364	36.4	36-8	37'1	375	36.9	35'9	354	$35 \cdot 8$	$36 \cdot 3$	$36 \cdot 6$	36	$36 \cdot 4$	364	36.4	36.4	$36 \cdot 5$	$36 \cdot 6$	36%	36.7	$36 \cdot 5$
December	$36 \cdot 5$	366	36.5	36.3	36.2	$35^{\prime \prime} 9$	359	359	$36 \cdot 3$	36.9	$36 \cdot 8$	35.7	$35 \cdot 2$	$35 \cdot 4$	36.1	$36 \cdot 6$	$36 \cdot 8$	36.5	36'5	36.5	36.5	36.4	$36 \cdot 4$	$36 \cdot 4$	36.4	$36^{\prime} 3$
Means	37.1	37°	37°	36.9	367	$36 \cdot 6$	36.5	36.9	377	383	38\%	37%	$36 \cdot 1$	358	361	36%	367	$36 \cdot 8$	$36 \cdot 8$	$36 \cdot 8$	$35 \cdot 8$	$36 \cdot 9$	36.9	37°	37°	$36 \cdot 9$

Summer.

April	37.6	376	37.6	374	373	373	$3^{3} 0$	397	405	$40^{\circ} \mathrm{O}$	38.6	36.4	35°	34:2	$34 \cdot 8$	$35^{\prime} 7$	36.6	$37^{\prime 2}$	373	36*9	368	37.1	372	37.3	37'5	37\%2
May	373	373	375	374	373	37 '5	38.6	39'9	$40 \cdot 2$	39.3	374	354	34.2	33.8	34.5	$35 \cdot 5$	$36 \cdot 3$	370	37'1	36.9	36.8	36.8	36.9		372	37\%
June	369	37°	37°	$36 \cdot 9$	36.9	372	38.5	39.5	393	38:2	36.7	$35^{\circ} \mathrm{I}$	339	335	33.5	33.8	34.7	357	36.3	36.4	36.2	36.4	36.5	36.7	36.7	36.4
July	36.1	$36 \cdot 4$	36.3	36.	${ }^{36} 6$	369	384	$39 \cdot 8$	397	$3^{8.8}$	374	$35 \cdot 5$	$33 \cdot 8$	33°	329	33^{8}	34.8	35.6	36.2	$35 \cdot 8$	$35 \cdot 6$	357	$35-8$	35.8	36\%	36.1
August	360	36.2	36.4	$36 \cdot 6$	36.6	372	39°	399	39°	37 I	$35^{\circ} 1$	33.6	329	326	$33 \cdot 4$	34'9	35.8	36.7	36.5	$35 \cdot 9$	$35 \cdot 7$	35:9	36.0	35.8	35.9	36°
September	36.6	$36 \cdot 7$	36.8	369	36.9	37°	37.8	39^{2}	399	$39 \cdot 5$	375	$35^{\circ} 4$	33'9	33°	33.3	34*9	36.0	36.8	36.7	36.5	36.5	36.4	36.4	36.4	36.6	36.5
Means	367	36.9	36.9	36.9	$36^{\circ} 9$	37^{2}	38.4	397	$39 \cdot 8$	38.8	37^{1}	35^{2}	34°	$33 \cdot 4$	33.7	34*8	35%	$36 \cdot 5$	36.7	36.4	363	$36 \cdot 4$	$36 \cdot 5$	36.5	36.7	36.5

Diurnal Inequality of the Declination at Dehra Din as deduced from the preceding Table.

Hours

Summer.																									
April	+0.4	$+0.4$	+0. +	+0.2	$+0.1$	+0.1	+0.8	+2.5	$+3.3$	+2:8	$+14$	-0.8	-2.2	-30	$2{ }^{2} 4$	-1'5	-0.6	$0 \cdot 0$	+0.1	$\bigcirc 3$	-0.4	-0.1	0%	+0:1	+0'3
May	+0.3	+0'3	+0.5	+0.4	$+0.3$	+0.5	$+1.6$	+2.9	+3.2	+2.3	$+{ }^{+} 4$	-16	-2.8	-32	-2.5	-1.5	$\rightarrow{ }^{\circ}$	$0 \cdot 0$	+0.1	-0.1	-0.2	-0. 2	-'1	00	+0.2
June	+0.4	+0.6	+0.6	+0.5	+0.5	+0.8	+21	+3'1	+2'9	+18	+0'3	-1'3	-2'5	-2'9	-2'9	-2.6	-17	-0.7	-0.1	\bigcirc	$-{ }^{-0.2}$	0	+0:I	+0.3	+0.3
Jaly	$0 \cdot 0$	+0'3	+0.2	+0.3	+0.5	+0.8	+23	+37	+3.6	+2.7	+ $1 \cdot 3$	-0.6	-23	-3.1	-3:2	-2.3	-1'3	-0.5	+0.1	-0.3	$-0^{\circ} 5$	-0 4	-o.3	-0.3	-0.1
August	00	+0.2	+0.4	+0.6	+0.6	+1.3	+30	+ 39	$+3^{\circ}$	+1.1	-0.9	-24	-3.1	-3.4	-2.6	$-1 \cdot 1$	-0.2	+0.7	+0.5	-0.1	-0.3	-0.1	$0 \cdot 0$	-0.2	-0.
September	+0: 1	+0.2	+o'3	+0.4	+0.4	+0.5	$+13$	+2.7	+3.4	$+3^{\circ}$	+1\%	-I'I	-2.6	-3.5	-3.2	-1.6	-0.5	+0.3	+0.2	$0 \cdot 0$	0.0	-0.1	-0.1	-0. 1	$+0 \cdot 1$
Means	+0.2	+0.4	+0'4	$+0.4$	+0.4	+0.7	+199	+3.2	+33	-2.3	+0.6						-0.8	$0 \cdot 0$	+0.2	O'1	02	-0.1	0 Oo	0	+0.2

$33000+$ Winter.																										
Months.	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	γ	γ	$\boldsymbol{\gamma}$	γ	γ		γ	γ	7	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	7	$\boldsymbol{\gamma}$	γ	γ
January	303	303	303	302	303	303	306	306	312	315	312	309	309	310	308	308	308	308	305	303	302	304	304	304	305	306
Fehruary	296	298	298	298	298	298	299	306	311	315	317	320	319	315	$\cdots 310$	307	300	296	297	298	296	297	296	297	2,8	303
March	289	293	293	294	295	296	296	298	300	304	312	318	320	319	313	304	295	292	293	289	288	290	292	294	295	299
October	27+	273	274	273	274	275	276	276	273	272	277	288	298	299	294	287	282	279	280	279	278	278	278	279	279	280
November	277	277	277	278	278	279	281	284	287	291	291	290	293	291	285	281	282	281	282	232	282	281	280	279	281	283
December	283	281	281	$2 S_{1}$	282	283	285	287	290	290	290	293	294	293	291.	289	285	282	282	281.	281	283	283	283	284	286
Means	287	288	288	288	288	289	291	293	296	298	300	303	306	305	300	296	292	290	290	289	288	289	289	289	290	293

Summer.

April .	$28+$	235	285	287	283	289	286	283	283	291	303	314	319	321	312	299	289	283	283	282	285	287	289	290	290	292
May	290	291	292	291	293	293	296	295	294	297	302	308	313	314	314	309	303	296	292	290	290	289	291	291	293	297
June .	292	292	292	292	292	293	294	293	293	296	298	298	306	313	314	312	304	294	290	289	291	293	293	291	293	296
July	295	295	296	295	296	296	299	301	299	298	301	305	309	311	311	309	304	298	295	296	297	297	298	298	299	300
August	287	258	288	287	287	287	286	282	284	292	306	315	323	322	317	308	303	296	292	291	292	291	290	293	294	296
September	273	272	270	270	269	272	272	264	358	257	262	270	284	294	293	286	279	275	274	273	271	273	$27+$	273	275	273
Means	287	287	287	297	288	288	289	286	285	289	295	302	309	313	310	304	297	290	289	287	288	288	289	289	291	292

Diurnal Inequality of the Horisontal Force at Dehrạ Dún as daduced from the preceding Table.

Hours.	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	${ }^{17}$	18	19	20	31	22	23	Mid.
Winter.																									
Months.	7	7	γ	7	$\boldsymbol{\gamma}$	7	\boldsymbol{r}	$\boldsymbol{\gamma}$		γ	$\boldsymbol{\gamma}$	γ	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$								
January	-3	-3	-3	-4	-3	-3	-0	0	+6	+9	+6	+3	+3	+4	+2	+2	+2	+2	-	-3	-4	-2	-2	-2	-1
February	\rightarrow	-5	-5	-5	-5	-5	--4	+3	+8	+ 12	+14	+17	+16	+12	+7	+4	-3	-7	-6	-5	-7	-6	-7	-6	-5
March -	-10	-6	-6	-5	-4	-3	-3	-1	+1	+ 5	+13	± 19	+2I.	+20	+14	+5	-4	-7	-7	-10	- 11	-9	-7	-5	-4
October	-6	-7	-6	-7	-6	-5	-4	-4	-7	-8	-3	+8	+18.	+19	+14	+7	+2	-1	0	-1	-2	-2	-2	-1	-1
November	-6	-6	-6	-5	-5	-4	-2	+1	+4	-8	+8	+7	$+10$	+8	+2	-2	- 1	-2	-1	-1.	-1	-2.	-3	-4	-2
Dectmber	-3	-5	-5	-5	-4	-3	-1	+1	+4	+4.	+4	+7	+8	+7	+5	+3	-1	-4	-+	-5	-5	-3	-3	-3	-2
Means	-6	-5	-5!	-5	-5	-4	-2	-	+3	+5	+7	+ro	+13	+12	+7	+3	-1	-3	-3	-4	5	4 ;		-4	-3
Summer.																									
Apr.l	-8	-7	-7	-5	-	-3	-6	-9	-9	- 1	+ 11	+22	+27	+29	+20	+7	-3	9	-0	-10	-7	-5	-3	-2	-2
May -	-7	-6	-5	-6	-4	-4	- 1	-2	-3	-	+ 5	+11	+16	+ 17	+17	+12	+6	-1	-5	-7	-7	-8	-6	-6	-4
June -	-4	-4	-4	-4	-4	-3	-2	-3	-3	-	+2	+2	+10	+17	+ 18	+16	$+8$	-2	-6	-7	-5	-3	-3	-5	-3
July -	-5	-5	-4	-5	-4	-4	-1	+1	-1	-2	+1	+5	+9	+11	+11	+9	+ +	-2	-5	-4	-3	-3	-2	-2	
August	-9	-8	-8	-9	-9	-9	-10	-14	-12	-4	+10.	+19	+25	+ 26	+21	+12	+6	-	-4	-5	-				
September	\rightarrow	-1	-3	-3	-4	-1	-1																	-3	-2
Means	-5	-5													$+20$	+13	+6	+3	$+1$	-	-2	-	+1	o	+2
Means	-5	-	-5	-5			-3	\rightarrow	-7	-3	+3	+10	$+7$	+2I	+13	+12	+5	-2	-4	-5	-4	-4	-3	-3	-1

Hourly Means of Vertical Force in C. G. S. Units (corrected for temperature) at Dehra Duin from the selected quiet days in 1908 .

Summer

Diurnal Inequality of the Vertical Force at Dehra Din as deduced from the preceding Table．

Hosre．	Mid．	－	：	3	4	5	6	，	8	9	－	${ }^{1}$	Noon．	${ }^{13}$	${ }^{14}$	15	16	71	｜ 8	${ }^{9}$	20	21	${ }^{32}$	${ }^{23}$	Mid
Winter．																									
Months．	γ	r	γ	7	r	r	r	γ	γ	r	γ		r	r	γ	r	r	γ	γ	r	γ	γ	γ	7	γ
January	＋1	＋1	＋2	＋	＋	＋	＋1	\bigcirc	＋3	＋3	－1	－5	－3	\rightarrow	－4	－1	＋2	＋	＋3	＋4	＋2	＋4	＋4	＋4	＋4
February	＋	＋	＋4	$+4$	＋4	＋3	＋	＋4	＋5	＋2	－3	－	－10	－10	－8	－7	－7	－3	－	。	＋1	＋1	＋3	＋2	＋2
March	＋3	＋＋	＋3	＋3	＋3	＋3	＋3	＋7	＋6	＋2	－6	-13	－ 55	-13	\rightarrow	－2	＋2	＋2	＋3	＋3	＋4	＋5	＋s	＋6	＋5
October	＋7	＋6	＋	＋6	＋5	＋5	＋4	＋7	＋7	＋2	－3	－10	－13	－10	－4	－1	－2	－4	－2	－2	－2	－2	－2	－2	－2
November	＋2	$+1$	＋2	＋	＋	＋1	＋1	＋1	＋2	＋	－3	－4	－	－3	－2	－2	－2	－1	＋	＋	＋	＋	＋	＋2	＋
December	＋2	＋2	＋2	＋ 3	＋2	＋2	＋2	＋3	＋3	。	－4	－9	－8	－4	－2	。	－	。	＋1	＋2	＋3	＋2	＋3	＋4	＋3
Means	＋3	＋3	＋3	＋3	＋2	＋2	＋2	＋3	＋4	＋1	－4	－8	－ro	－8	－5	－3	－2	－1	＋．	＋1	＋1	＋1	＋2	＋2	＋2

Summer．																									
April ．	＋6	＋6	＋5	＋5	＋5	＋5	＋7	＋8	＋2	－9	－18	－19	－16	－10	－5	－1	－	＋1	＋2	＋3	＋5	＋5	＋6	＋5	＋5
May ．	＋5	＋5	＋5	＋4	＋5	＋6	＋10	＋8	－	－10	－21	－21	－18	－11	－4	＋2	＋3	＋3	＋3	＋2	＋4	＋5	＋6	＋5	＋6
June ．	＋4	＋4	＋4	＋4	＋3	＋6	＋9	＋8	－1	－10	－19	－19	－15	－ 11	－8	－3	＋1	＋4	＋7	＋7	＋7	＋8	＋8	＋8	＋8
July	＋6	＋6	＋6	＋6	＋6	＋8	＋13	＋II	＋4	－2	－9	－19	－20	－18	－12	－4	＋1	＋1	＋3	＋3	＋3	＋4	＋5	＋4	＋5
August	＋4	＋5	＋4	＋4	＋5	＋6	＋10	＋6	－4	－13	－17	－ 17	－10	－6	－	＋	＋2	＋2	＋1	＋1	＋3	＋4	＋3	＋4	＋4
September ．	－	－2	－2	－1	－1	－1	－	＋3	＋1	－5	－10	－8	－II	－9	－4	＋3	＋7	＋7	$+4$	＋5	＋4	＋7	＋6	＋7	＋7
Means	＋4	＋4	＋4	＋4	＋4	＋5	＋8	＋7	－	－8	-16	－17	－15	－11	－6	－	＋2	＋3	＋3	＋3	＋4	＋5	＋6	＋5	＋6

$$
\text { Hourly Means of the Dip as determined at Dehira Din from the selected quiet days in } 1908 .
$$

Haurs.	Mid.	!	2	3	4	5	6	7	8	- 9	10	4	Noon.	13	14	15	16	17	18	19	20	$2{ }^{\prime \prime}$	22	23	Mid.	Means.
Dip $43^{\circ}+\cdots$ - ${ }^{\text {¢ }}$ Winter.																										
Months.	,	,	,			,	,	,	,	,	,	,	,	,	,	,		,			,			:	,	,
January	38.9	38.9	39°	39.0	38.9	389	$3^{8 \cdot 8}$	$3^{8 \cdot 7}$	$38 \cdot 6$	38.4	$3^{8 \cdot 3}$	$38 \cdot 3$	$3^{8.2}$	38:2	38.4	$38 \cdot 5$	$38 \cdot 7$	38.7	38.9	39'1	39°	39°	39°	39*0	39'0	$38 \cdot 7$
February	402	400	$4^{0} 0$	$40 \cdot 0$	40°	39'9	$39^{\circ} 9$	39.6	39'4	39.0	38.6	$38 \cdot 3$	$38 \cdot 2$	$3^{8 \cdot 3}$	38.7	38.9	$39^{\circ} 3$	397	39^{-8}	$39 \cdot 8$	39*9	$39^{\circ} 9$	40%	39.9	$39^{\prime} 9$	39.5
March	40%	406	$40 \cdot 5$	$40 \cdot+$	$40^{\circ} 4$	$40 \cdot$	404	$40 \cdot 5$	40:3.	39\%9.	39'1	$38: 3$	38.2	$38 \cdot 3$	39\%	39:7	$40^{\circ} 4$	40×5	40.6	407	$40 \cdot 8$	40.8	40%	$40 \cdot 6$	$40 \cdot 5$	40'1
October	45°	450	45°	$45^{\circ} 0$	448	$4{ }^{1} 8$	447	44.9	45°	44^{-8}	443	43'3	42.6	$42^{\circ} 7$	43.3	43:9	$44^{\circ} \mathrm{O}$	44.1	44.2	44.2	$44^{\circ} 2$	$44^{\prime 2}$	$44^{\prime 2}$	$44^{\prime 2}$	44^{2}	4+'3
November	454	$45^{\prime} 3$	454	453	453	45°	45.1	450	44\%9	$44 \cdot 6$	$44 \cdot 4$	4+4	$44 \cdot 2$	$44^{\circ} 4$	$4 \cdot 8$	45°	44'9	45°	45^{\prime} I	45*1	$45^{1} 1$	45'1	45.3	$45 * 3$	$45^{\circ} 2$	45\%
Deceraber	$4+5$	$+{ }^{+6}$	44.6	446	4.6	$4 \cdot 5$	444	44.4	44°	$44^{\circ} \mathrm{O}$	$43 \cdot 8$	43.4	43.4	43.6	43.8	44*1	443	44.4	44.5	44.6	446	44.5	446	44.6	44.5	443
Means	$42 \cdot 5$	42.4	42.4	$42 \cdot 4$	$42 \cdot 3$	$42 \cdot 3$	42.2	$42 \cdot 2$	42'I	41.8	41'4	41°	408	409	413	417	41'9	42'I	42.2	$42 \cdot 3$	423	$42 \cdot 3$	42.3	$42 \cdot 3$	$43 \cdot 2$	42.0

Summer.

April	42'3	$42 \cdot 3$	42.2	42'1	42'1	42°	42'3	$42 \cdot 5$	42.7	41'3	401	394	39.3	39'6	40'3	$4^{1} 2$	41'7	42'1	42.2	42'3	42.2	$4^{*} \mathrm{t}$	42.1	42*O	$42^{\circ} \mathrm{O}$	41.6
May	424	423	423	423	423	$42 \cdot 3$	42.4	$42 \cdot 3$	41:9	$41 \cdot 2$	404	40'1	$40 \cdot 0$	$40 \cdot 3$	$40^{\circ} 7$	$41 \cdot 3$	41.6	$42^{\circ} 0$	42.2	$42 \cdot 3$	42.4	$42 \cdot 5$	$42 \cdot 1$	$42 \cdot 3$	$42^{\prime} 3$	$41 \cdot 8$
June	42'9	42'9	+29	42.9	$42 \cdot 9$	43°	431	43.1	$4{ }^{2 \cdot 7}$	4.20	41.4	414	4'2	47'1	4172	$41 \cdot 6$	42.1	$42 \cdot 3$	43^{2}	433	$43^{\prime} 1$	$43^{1} 1$	43*1	43*2	$43^{\circ} 1$	$42^{\circ} 5$
July	42'7	427	$42^{\prime 7}$	437	427	42\% 7	429	$-42 \cdot 6$	424	421	41.6	$40 \cdot 8$	$40 \cdot 6$	$40 \cdot 6$	$40 \cdot 9$	41.4	41'9	423	$42 \cdot 5$	$42 \cdot 5$	$42^{\prime} 4$	42.5	42.5	424	42.4	42 I
August	43.5	$43^{\prime} 5$	434	435	$43 \cdot 6$	43^{6}	$43 \cdot 8$	$43 \cdot 8$	43.2	$42 \cdot 3$	41'4	40'9	$40 \cdot 9$	$41 \cdot 2$	417	$42 \cdot 2$	42.6	42.9	$43^{\circ} \mathrm{I}$	$43^{\prime} 1$	43*2	$43 \cdot 3$	433	43'2	43^{11}	42'8
September	4.2	$44^{1} 1$	442	$4{ }^{\prime} 2$	443	$44 \cdot 1$	44:2	448	45°	447	44^{2}	439	43°	$42 \cdot 6$	42.9	43.6	44.2	44.4	443	44.4	$44^{\circ} 4$	44.5	$44^{\prime \prime} 4$	44%	$44^{\circ} 4$	44'1
Means	43°	43°	$43^{\circ} \mathrm{O}$	43°	$43^{\circ} \mathrm{O}$	43°	43 I	$43 \cdot 3$	42.9	423	415	41'I	40.8	$40 \cdot 9$	$41^{\prime} 3$	4199	42.4	$42 \cdot 8$	429	43°	43°	43'0	$43^{\circ} 0$	42'9	42'9	42.5

Diur nal Inequality of the Dip at Dehra Dún as deduced from the preceding Table.

Hours.	Mid.	!	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.
Winter.																									
Months.	Y	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	${ }^{\circ}$	7	γ	γ	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ
Ja nuary	+02	+0.2	+0.3	$+0.3$	$+0.2$	$+0.2$	+0.1	00	-0.1	-0.3	-0.4	-0'4	-0.5	-0.5	-0.3	-0.2	$0^{\circ} 0$	0%	$+0 \cdot 3$	+0.4	+0.3	+0.3	+0, 3	+ ${ }^{3}$	+0'3
February	+0.7	+0'5	+0.5	+0.5	+0'5	+0.4	+0.4	+o'1	-0'1	-0.5	-0.9	$-1 \cdot 2$	3	12	-0.8	-0.6	-0.2	+0.2	+o'3	+0.3	+0.4	+0.4	+0.5	$+0.4$	+o. 4
March	+o6	+0.5	+0'4	+0'3	+0.3	+0, 3	+o, 3	+0.4	+0'2	-0.2	-10	-1.8	-1'9	-1.8	-1'1	-0.4	+0'3	+0.4	+0'5	+0.6	+0.7	$+0 \cdot 7$	+0.6	+0.5	+0.4
Oc:ober	+0.7	+0.7	+0.7	+0.7	+0.5	+0.5	+0'4	+0.6	+0.7	+0.5	$0 \cdot 0$	-1.	-17	-1.6	-1*0	-0.4	-0.3	-0.2	-0.1	-0.1	-0.1	-0. 1	-0.1	-0.1	-0. 1
November	+0.4	+0.3	+0.4	+0.3	+0.3	+0.2	+0.1	00	-0.1	-34	-0.6	-0.6	-0.8	-0.6	-0.2	00	-0.1	00	+0.1	+0.1	+0.1	+0.1	+0.3	+0.3	+0. 2
December	+0'2	+0'3	+0'3	+0.3	+0.3	+0.2	+0.1	+0'1	-0'1	-0.3	-0.5	-0.9	-09	$\square 7$	-0.5	-0.2	$0{ }^{\circ}$	+0.1	$+0.2$	+0.3	+0.3	+0.2	+0.3	+03	+02
Means	+005	+0.4	+0.4	+0.4	+0.3	+0.3	+0.2	+0.2	+0.I	-0.2	-0.6	-10	-12	-1.	-0.7	-0.3	-0.1	+0.1	+0. 2	+0.3	+o, 3	+ ${ }^{\circ} 3$	$+0^{*} 3$	+o. 3	+0.2
Summer.																									
April	+0.7	+0.7	+0.6	+0'5	+0.5	+0.4	+0.7	+0.9	+0.6	-0.4	-1×5	-2'2	-23	2.0	-13	-0.4	+0.1	+0.5	+0.6	+0.7	+0.6	+0.5	+0.5	+0'4	+o4
May	+0.6	+0.5	+0.5	+0.5	+0.5	+0.5	+0.6	+0'5	+01	-0.6	-14	-1.7	- 8	-1.5	-1'1	-0.5	-0.2	+0.2	+0.4	+0.5	+0.6	+07	+0.6	+0.5	+0.5
June	+0.4	+0. +	+0.4	+0.4	+0.4	+0.5	+0.6	+o'6	+0.2	$\rightarrow 0$	-1'1	-11	-13	-t. 4	-13	-0'9	-0'4	+0.3	+0.7	+0.8	+0.6	+0.6	+0.6	+0.7	$+0.6$
July	+0.6	+0.6	+0.6	+06	+06	+0.6	+0.8	+0.5	+0.3	0	-0.5	-13	- 15	-1.5	-1.2	-0.7	-0.2	+0.2	+0.4	+ ${ }_{+}+$	+0.3	$+{ }^{+} \cdot 4$	+0. +	+0.3	+0*3
August	+0.7	+0.7	+0.6	+0.7	+0.8	+08	+ro	+1'0	+0.4	-0.5	-14	-19	-19	-1.6	-11	-0.6	-0.2	+0.1	+0.3	+0.3	+0.4	+0.5	+0.5	$+{ }^{+} 4$	+0. 3
September	+0.1	00	+01	+0.1	$+0.2$	\%o	+0.1	+0.7	+0.9	+0.6	+0.1	-0'2	-I'I	-15	-122	-0'5	+o. 1	+0, 3	+0.2	$+0_{3}$	+0.3	+0.4	+o. 3	+0. ${ }_{4}$	+0.3
Means	$+0.5$	+0.5	+0.5	+0.5	+o's	+0.5	+0.6	+07	+0.4	-0.2	-10	-1'4	-1'7	-1.6	-1.2	-0.6	-0. 1	+0.3	+0.4	+0.5	+0.5	+6.5	+0.5	+o.t	+0.

BARRACKPORE OBSERVATORY TABLES.

NO. 26 PARTY (MAGNETIC).
Hourly Means of the Declination as determined of Barrackpore from the selected quiet days in 1908.

Hours.	Mid.	,	2	3	4	5	6	7	8	\bigcirc	10	\because	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.	Means.
Declination E. 1^{0} - Winter.																										
Months.	,	,	,	,	,	,	,	,	,	,	,	,	,	-	,	,	,	,	,	,	,	,	,	,	,	,
January	74	$7{ }^{4}$	74	72	7^{11}	6.9	6.7	6.7	$7 \cdot 5$	8.8	$8 \cdot 9$	8.4	$8 \cdot 2$	$8 \cdot 1$	78	73	$7 \cdot 5$	$7 \cdot 6$	775	7.6	775	7×4	7.4	74	$7{ }^{7}$	76
February	73	73	$7{ }^{7} 4$	7.3	6.9	6.5	$6 \cdot 3$	$6 \cdot 3$	73	8.7	9.5	97	9.2	$8 \cdot 3$	73	$7 \cdot 2$	71	6.9	6.7	$7{ }^{\circ}$	711	6.9	72	$7 \cdot 1$	73	74
March	6.8	6.8	$6 \cdot 5$	6.4	6.5	6.4	64	$7{ }^{1}$	$8 \cdot 3$	$9: 1$	90	74	6.2	53	$5{ }^{\circ} 4$	$6 \cdot 2$	6.7	6.9	6.5	6.5	6.6	6.6	67	6.6	6.7	$6 \cdot 8$
October	4.6	46	47	46	45	42	$4{ }^{1}$	52	6.1	6.2	5:	$3 \cdot 3$	2.1	$2{ }^{\circ}$	$3 \cdot 1$	4.1	49	$4 \cdot 5$	$4{ }^{\circ}$	4.2	$4 \cdot 3$	4^{1}	$4 \cdot 3$	$4 \cdot 4$	46	43
November	${ }^{3} 8$	$3 \cdot 9$	3.8	37	36	3.6	$3 \cdot 5$	37	$4 \cdot 5$	47	44	3.4	3.2	3.8	$4{ }^{\circ}$	40	$3 \cdot 9$	3.9	377	$3 \cdot 7$	3.6	36	37	$3 \cdot 8$	3.9	3.8
December	3.6	37	3.6	36	$3 \cdot 5$	$3 \cdot 3$	31	$3{ }^{\circ}$	35	4^{11}	$4 \cdot 3$	3.2	29	33	37	$4 \cdot 2$	43	39	$3 \cdot 6$	37	37	37	$3 \cdot 5$	3.6	3.6	3.6
Means	56	56	5.6	$5 \cdot 5$	54	$5 \cdot 2$	50	573	6.2	70	6.9	59	$5 \cdot 3$	5•I	$5 \cdot 2$	$5 \cdot 5$	57	$5 \cdot 6$	53	55	$5 \cdot 5$	54	55	$5 \cdot 5$	$5 \cdot 6$	5.6

Summer.																										
April .	65	67	$6 \cdot 7$	65	6.4	6.5	775	$8 \cdot 8$	9.0	$8{ }^{\circ}$	6.6	49	37	38	44	5*5	6.4	6.6	6.7	6.3	6.2	6.2	$6 \cdot 3$	$6 \cdot 4$	6.5	6.4
May .	6.6	6.6	6.8	6.8	6.8	69	8.1	911	9.6	8.1	6.3	46.	3.6	37	$4 \cdot 2$	56	$6 \cdot 4$	6.8	6.6	6.1	6.2	$6 \cdot 3$	6.2	6.3	6.4	6.4
June . .	6.1	6.2	6.1	6.1	5'9	6.4	8.2	8.6	$8 \cdot 3$	70	54	3.8:	2.8	30	3.2	3'9	49	5.8	63	59	58	$5 \cdot 8$	6.0	$6 \cdot 0$	6.0	57
July . .	54	5.6	$5 \cdot 8$	58	58	6.3	77	91	9.15	$8 \cdot 2$	65	43	30	2.9	3.3	4.1	5.I	$5 \cdot 6$	57	5:1	5.0	5.1	5.2	$5 \cdot 3$	$5 \cdot 5$	56
August	48	50	$5{ }^{12}$	53	$5 \cdot 6$	$5 \cdot 9$	$7 \cdot 8$	8.7	$7 \cdot 6$	59	44	2.9	24	2.8	3.5	47	$5 \cdot 6$	60	$5 \cdot 5$	47	47	$4 \cdot 6$	$4 \cdot 8$	$4{ }^{4} 9$	49	$5{ }^{11}$
September .	$4 \cdot 3$	49	49	47	$4 \cdot 8$	4 4	6.0	78	$3 \cdot 1$	$7{ }^{\circ}$	53	3.6	2.2	r9	26	3.8	5\%	53	$5{ }^{\circ}$	$4 \cdot 8$	47	47	47	47	4.8	$4 \cdot 8$
Means	57	5.8	59	$5 \cdot 9$	$5 \cdot 9$	6.1	7.6	8.7	$8 \cdot 6$	74	5.8	4\%	30	$3 \% 0$	$3 \cdot 5$	46	$5 \cdot 6$	6.0	6.0	5×5	54	5×5	$5{ }^{5} 5$	5.6	57	57

Diurnal Inequality of the Declination at Barrackpore as deduced from the preceaing Table.

Hoars.	Mid.	-	2	s	4	s	6	7	8	9	10	\square	Noon.	33	14	15	16	17	18	$\stackrel{1}{\square}$	20	21	22	23	Mid.
Winter.																									
Months.	,	,	,	,	,				,	,	,			,			,							,	,
January	-0.2	-0.2	-0.2	$\bigcirc 0.4$	-0.5	-0.7	-0.9	-0.9	$-0^{1} 1$	+1/2	+ 13	+0.8	+0.6	+0. 5	+0:3	-0.3	-Q:1	$0 \cdot 0$	-0.1	$0 \cdot 0$	-0.1	-0.2	-0.2	-0^{2}	-0.3
February	-0.1	-0.2	$0 \cdot 0$	-0.2	-0.5	-0.9	$-1 \cdot 1$	-rı	-0.1	+1/3	+2.	+23	+1.8	+0.9	-0'1	-0.2	-0.3	-0.5	-0.7	-0.4	-0.3	-0.5	-0.2	-0.3	-0.1
March	00	$0 \cdot 0$	-0.3	-0.4	-0.3	-0.4	-0.4	+0.3	+1.5	$+24$	+22	+0:6	-0.6	- 1.5	-1.4	-0.6	-0.1	+0.1	-0.3	-0.3	-0.2	-0.2	-0.1	-0.2	-0.1
October	+0.3	$+0.3$	$+0.4$	-0.3	+0. 2	-0.1	$\rightarrow 0.2$	+0.9	+18	+19	+0.8	-10	-2.2	-23	-1.2	-0.2	+0.6	+0. 2	-0_{3}	-0.1	$0 \cdot 0$	-ง.2	$0 \cdot 0$	+0.1	+0.3
Novernber	00	+0.1	$0 \cdot 0$	-0.1	-0.2	-0.2	\rightarrow - 3	-0.1	+0.7	+0.9	+0.6	-0.4	-0.6	$0 \cdot 0$	+0.2	+0.2	+0.1	+0:1	-0.1	$\sim .1$	-0.2	-0.2	-0.1	$0 \cdot 0$	+0:1
December	$0 \cdot$	$+0_{1}$	$\bigcirc \cdot$	00	\rightarrow - 1	-0.3	-0.5	-0.6	-0.1	+o. 5	$+0.7$	$\rightarrow 0.4$	-0.7	$\longrightarrow 3$	+0.1	+0.6	+0.7	+0.3	-o	+o. 1	+o.i	+0.i	-0^{11}	00	$0 \cdot 0$
Means	$0 \cdot 0$	$0 \cdot 0$	0%	-0.1	-0.2	-0.4	--06	-0.3	$+0.6$	$+1.4$	$+1 \cdot 3$	+0.j	-03	--5	-0.4	-0.1	+o. 1	$0 \cdot 0$	-0.3	-\%	-0.1	-0.4	-0.1	$\bigcirc .1$	0%

Summer.																								
April .	+0.1	+0.3	+0.3	+0.1	00	+0,1	+ I'1	+24	+26	$+1.6$	+0.2	-1.5	-27	-2.6	-2.0 -0.9	$0 \cdot 0$	+0.2	+0.3	-0.1	-0.2	-0.2	-0.1	00	+0.1
May . -	+0.2	+0.2	+0.4	+0.4	+0.4	+0.5	+ 1'7	+27	$+3 \cdot 3$	+1•7	-0'1	-1.8	-2.8	-27	$-2.2-0.8$	$0 \cdot 0$	+ $0 \cdot 4$	+0.2	-0.3	-0.2	-0.1	-0.2	-0.1	00
June -	+0.4	+0.5	+0.4	+0.4	+0.2	+0.7	+2.5	+29	$+2.6$	+1.3	-0.3	-1'9	-299	-2.7	$-2.5 ;-1.8$	-0.8	+0.1	+0.6	$+0.2$	+0.1	+0.1	+0.3	+0.3	$+0 \cdot 3$
July - .	-0.2	000	+0.2	+0.2	+0.2	$+0.6$	+21	$+3 \cdot 5$	$+35$	+2.6	+0.9	-1•3	-2.6	-2.7	$-2.3-1.5$	-0.5	00	+0.1	$\rightarrow 0$	-0.6	-05	-0.4	-03	-0.1
August	-0.3	-0.1	+0.1	+0.2	+0.5	+0.8	$+27$	+3.6	+25	$+0.8$	-0.7	-2.2	-27	-2.3	$-1.6-0.4$	+0.5	+0.9	$+0^{\circ} 4$	-0.4	-0'4	-0'5	-0.3	-0.2	-0'2
September	$0 \cdot 0$	+0.1	+0.1	-0.1	00	0 O	+1.2	$+3.0$	$+3.3$	+2.2	$+0.5$	-1.2	-2.6	-29	$-2.2-1.0$	+0.2	+0.5	$+0.2$	$0{ }^{\circ}$	-0.1	-0'1	-0.1	-0'1	$0 \cdot 0$
Means	$0 \cdot 0$	+0.1	+0.2	+0.2	+0.2	+0.4	+1.9	+3'0	+2.9	+177	+0.1	-17	$-2 \cdot 7$	-2'7	-2.2-1.1	-0.1	+0.3	+0.3	-0.2	-0.3	-0.2	-2	-0.1	$0 \cdot 0$

Winter.

Months.		$\boldsymbol{\gamma}$		γ	7	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	γ	γ	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$
January	292	293	29+	294	294	297	297	300	305	313	315	315	312	309	304	304	303	303	301	297	297	295	295	297	296	301
February	$29+$	294	295	297	296	296	299	303	312	319	326	329	33 I	326	318	$3{ }^{10}$	304	300	296	296	294	292	293	294	296	305
March	293	291	295	294	295	298	300	302	308	319	33°	339	342	337	327	314	303	297	297	296	292	290	292	294	297	306
October	273	279	280	280	281	283	285	287	291	298	308	321	328	324	314	304	296	291	290	290	286	285	287	286	287	294
November	289	289	291	291	293	294	295	300	305	312	317	321	321	313	307	300	297	295	293	290	290	291	291	290	291	299
December	299	300	299	300	301	304	305	310	314	319	322	324	325	323	318	314	308	302	300	299	298	298	299	299	299	308
Means	291	291	293	293	293	295	297	300	306	313	320	325	327	322	315	308	302	298	296	295	293	292	293	293	294	302

Summer.

April	276	277	279	278	281	283	283	283	292	310	325	331	333	326	317	303	290	284	282	279	278	279	282	283	283	293
May	285	288	283	290	290	292	294	300	309	318	328	332	330	323	318	310	302	294	291	290	289	286	285	288	289	301
June	289	290	290	290	290	291	293	295	299	310	320	324	327	327	323	314	305	296	289	286	287	287	292	288	288	300
juiy	288	289	290	291	290	292	295	302	307	313	322	325	328	325	318	310	301	294	290	290	291	291	291	290	291	301
A45\%s:	-81	253	253	$2 \varepsilon_{3}$	282	285	285	288	293	304	315	321	32 I	320	315	305	297	290	287	288	286	284	285	283	286	294
Supera		058	2.3	267	253	259	270	263	259	265	277	287	297	301	298	290	280	275	275	273	270	267	270	270	270	275
Means	281	283	283	283	284	285	287	289	293	303	315	320	323	320	315	305	296	289	286	284	284	382	284	284	285	294

Diurnal Inequality of the Horizontal Force at Barrackpore as deduced from the preceding Table.

Hours.	Mid.	\pm	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	${ }^{17}$	18	19	20	21	22	23	Mid.
Winter.																									
Months.	γ	γ	7	$\boldsymbol{\gamma}$	γ	7	7	γ	γ	${ }^{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	γ								
January	\rightarrow	-8	-7	-7	-7	-4	-4	- 1	+4	+12	+14	+1+	+11	+8	+3	+3	+2	+2	\bigcirc	-4	-4	-6	-6	-4	-5
February	-11	-11	-9	-8	-9	-9	-6	-2	+7	+14	+21	+24	+26	+21	+13	+5	-1	-5	-9	-9	-11	- 13	-12	- 11	-9
March	-14	-15	-11	-12	-11	-8	-6	-4	+2	+13	+24	+33	+36	+31	+2I	+8	-3	-9	-9	-10	-14	-16	-14	-12	-9
October	-16	-15	-14	-14	-13	-11	-9	-1	-3	+4	+14	+27	+34	$+30$	+20	' +10	+2	-3	-4	-4	-8	-9	-7	-8	-7
November	-10	-10	-8	-8	-6	-5	--4	+1	+6	+13	+18	+22	+22	+14	+8	+1	-2	-+	-6	-9	-9	-8	-8	-9	-8
December	-9	-8	-	-8	-7	-4	-3	+2	+6	+11	+14	+16	+17	+15	+10	+6	o	-6	-8	-9	-10	-10	-9	-9	-9
Means	-11	-11	-9	-9	\rightarrow	-7	-5	-2	${ }^{+4}$	+11	+18	+23	+25	+20	+13	+6	-	-4	-6	-7	-9	-10	-9	-9	-8
Summer.																									
April	-17	-16	-14	-15	-12	-10	-10	-10	-1	+17	$+32$	+38	+ 40	+33	+24	+10			-11	-14	-15	-14	-11	-1	-10
May	-16	-13	-13	-11	- 11	-9	-7	-1	+8	+17	+27	+3I					+1								
June		-10			-10			-					+29		$+17$	+9	+1	-7	-10	-11	-12	-15	-16	-13	-12
	-1I	-10	-10	-10	-10	\rightarrow	-7	-5	- 1	+10	+20	+24	+27	+27	+23	+14	+5	-4	-11	-14	-13	-13	-8	-12	-12
July	- 13	-12	-11	-10	-11	-9	-6	+1	+6	+12	+21	+24	+27	+24	+17	+9	0	-7	-11	-11	-10	-10	-10	-11	-10
August	-13	-11	-	- 11	-12	-9	-9	-6	--1	+10	+21	+27	+27	+26	+21	+11	+3	-4	-7	-6	-8	-10	-9	-11	-8
Septernber	-8	-6	-7	-8	-7	-6	-5	-12	-16	-10	+2	+12	+22	+26	+23	+15	+5	0	o	-2	-5	-8	-5	-5	-8
																								-5	-5
Means -	-13	-11	- 11	-I!	-10	-9	-7	-5	-1	+9	+21	+26	+29	+26	+2I	+ 11	+2		-8	-	-1	-	-	-1	

Diurnal Inequality of the Vertical Force at Barrackpore as deduced from the preceding Table.

Hours	Mid.	1	2	3	4.	5	6	7	8	9	10	11.	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.

Winter.

Months.	γ	7	$\boldsymbol{\gamma}$	γ	7	$\boldsymbol{\gamma}$	7	$\boldsymbol{\gamma}$	7	γ	$\boldsymbol{\gamma}$	7	γ	7	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	\boldsymbol{r}	γ	γ	$\boldsymbol{\gamma}$	\boldsymbol{r}	$\boldsymbol{\gamma}$	γ	γ
January .	+3	+3	+3	+2	+3	+3	+4	+4	+5	+4	0	-3	-5	-7	-9	-5	-1	-1	0	+1	+1	+1	+3	+3	$+3$
February	+4	+4	+5	+5	+5	+5	+6	+8	+8	+4	-1	-6	-14	-15	-13	-10	-6	-2	-	+2	+2	+3	+4	$+4$	+4
March	+4	+5	+5	+5	+6	+6	+7	+7	+5	-1	-8	-12	-14	-11	-8	-5	-3	- ${ }^{2}$	0	0	+1	+1	+2	+3	+3
October	+3	+3	+4	+4	+5	+5	+7	+8	+4	-4	-10	-12	-2	-7	-4	-3	-2	-1	-	0	\bigcirc	+1	+1	+1	+1
November	+3	+3	+3	$+3$	+4	+4	+4	+6	+5	+1	${ }^{2}$	-6	-6	-5	-6	-5	-3	0	+1	0	-	+1	+2	+1	+1
December	+2	+2	+2	+3	+3	+4	+5	+6	+5	+1	-4	-7	-5	-5	-3	-1	-1	-	+2	+1	0	-	+1	0	+1
Means	+3	+3	+3	+3	$+4$	+4	+5	+6	+5	+1	-4	-8	-10	-9	-7	-5	-3	-1	0	0	\bigcirc	+1	12	± 2	+2

Summer.

April -	+ 4	+4	+4	+5	+5	+5	+7	+4	-3	-8	\square_{13}	-14	-12	-8.	-3	-1	-1	-I	+1	+2	+4	+4	+4	+5	+4
May -	+5	+5	+5	+5	+5	+6	+8	+5	-	-5	-10	-10	-11	-8	-5	-2	-1	-1	-1	\bigcirc	+1	+2	+3	+3	+2
June -	+3	$+3$	+2	+2	+3	+4	+5	+3	-	-3	-6	-9	-II	-11	-9	-5	-2	+1	+2	+3	+4	+4	+5	+4	$+_{4}$
July	+6	+6	+6	+6	+6	+7	+8	+6	+3	-2	-7	-12	-12	-9	-7	-5	-3	-	+1	+1	+3	+3	+3	+3	+3
August	+2	+2	$+1$	+1	0	+2	+2	-2	-3	-4	-4	-1	-	-	0	+3	+2	0	-2	+1	+1	+2	+2	$+2$	+3
September	+3	+3	+3	+3	+3	+4	+5	+6	+2	2	-7	-10	-8	-5	-3	-	0	0	o	+1	+3	+3	+4	+4	+4
Means	+4	+4	+3	+4	+4	+5	+6	+4	-	-4	-8	$\rightarrow 9$	-9	-7	-5	-2	-1	0	0	+ 1	+2	+3	+3	+3	+3

N. B.-When the sign is + the Vertical force is more, and when -it is less than the mean.
Hourly Means of the Dip as delermined at Barrackpore from the selected quiet days in 1908 .

Diurnal Inequality of the Dip at Barrackpore as deduced from the preceding Table.

Hours	Mid	1	2	3	4	5	6	7	8	9	10	\because	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.
Winter.																									
Months.		,		,				,		,		,	,	,	,	,				,	,		,	,	
January	+0.5	+0'4	+0.4	+0.3	+0'4	+0.3	+0.4	+0.2	$+0 \cdot 1$	-0.3	-0.6	-0.8	-0.9	-0.9	-0.8	-0.6	-0.2	-0.2	-0.1	$+0.2$	+0.2	$+0 \cdot 2$	+0.4	+0.3	+0*3
February	+0.7	+0.7	+0.7	+0.6	+0.7	+0.7	+0.6	+0.6	+0.2	-0.4	-10	-1.5	-2'1	-1.9	-1.5	-10	-0.5	00	+0.3	+0.4	+0.5	+0.7	+0.7	+0.7	+0.6
March	+0, 9	+10	+0.9	+0.9	+0.9	+0.8	+0.8	+0.7	+0.3	-0.5	-15	-2I	-24	-2.0	$-1 \cdot 3$	-0.6	+ ${ }^{\circ}$	$+0.3$	$+0^{\circ} 4$	+0.5	+0.7	+0.8	+0.8	+0.8	+0.6
October	+0.9	+0.9	+0.9	+0.9	+0.9	+0.8	+0.9	+o'9	+0.5	-0.4	-1.2	-1.9	-21	-17	-10	-0.6	-0.2	+0.1	+0.2	+0.2	+0.3	+0.5	+0.4	+0.4	+0.4
November	+0.6	+0.6	+0'5	+0.5	+0.5	+0.4	+0.4	+0.3	$+0.1$	-0.5	-0.9	-1.3	$-1 \cdot 3$	-0.9	-0.7	-0.4	-0.1	+0.1	+0.3	+0.3	+0.3	+0.4	+0.4	+0.4	+0.4
Decernber	+0.5	+0.4	+0.5	$+0^{\circ} 5$	+0.5	+0'4	$+0.4$	$+0.3$	+0.1	-0.4	-0.8	-1'I	-1.1	-1.0	-0.6	-0.3	-0.1	$+0.2$	$+0.4$	+0.4	+0.4	+0.4	$+0.4$	+0.3	+0.4
Means	+0.7	+0.7	+0.7	+0.6	+0.7	+0.6	+0.6	+0.5	$+0.2$	-0.4	-1.0	-14	-1.6	-1.4	-1.0	-0.6	-0.2	+0.1	+0.3	+0.3	+0.4	+0.5	+0.5	+0'5	+o.5
Summer.																									
April .	+0.9	+0.9	+0.8	+0'9	+0.8	+0.7	+0,9	+0.6	$\bigcirc{ }^{\circ} 2$	-r'3	-2.2	-2'5	-2.4	-1•9	-12	-0.5	$0 \cdot 0$	+0.3	+0'5	+0.7	+0.9	+0•8	+0,7	+0.7	+0.6
May	+ 10	$+0.9$	+0.9	+0.8	+0.8	+0.8	+0.9	+0.4	-0.3	-ro	-r*7	-r.9	-199	-1.4	-100	-0.5	-0.1	+0.2	+0.4	+0.5	+0.6	+o. 8	+0.9	+0.7	$+0.7$
June	+0.7	+0.7	+0.6	+0.6	+0.7	+0.7	+0.7	+0.5	-0.0	-0.6	-1.2	-1.5	-1.8	-1.8	-155	-0.8	-0.3	+0.3	+0.6	+0.8	+0.0	+0.8	+0.7	+0.8	+0.8
July .	+0.9	+0.8	+0.3	+o. 8	+0.8	+0.8	+0.7	+0.3	$\bigcirc 0.1$	-0.7	-13	-1.8	-r9	-1.6	-1.2	-0.8	-0.3	+0.2	+0.5	+0.5	+0.6	+0.6	+0.6	+0.6	+0.6
August	+0.6	+0.6	+0.4	+0.5	+0. 5	+8.5	+o' 5	+0.1	-0.2	-0.7	-1'1	- 1.2	-1.1	-1.1	-0.9	-0.3	00	+0.1	+0.1	+0.3	+0.4	+0.5	+0.5	+0.6	+0.5
September	+0.5	$+0.4$	+0.4	+0.5	+0.4	+0.5	+0.5	+0.8	+0.7	+0.2	-0.6	-1.2	-r.5	-14	-1.2	-0.6	-0.3	-0.I	-0.1	+0.1	+0.3	+0.5	+0.4	+0.4	+0.4
Means	+0.8	+ ${ }^{\circ} 7$	+0.7	+0.7	+0.7	+0.7	+0.7	+0.5	-0.0	-0.7	$-1 \cdot 3$	-17	-r. 8	-1.5	-1.2	-0.6	-0.2	$+0.2$	+0.3	+0.5	+0.6	+0.7	+0.6	+0.6	+o.6

TOUNGOO OBSERVATORY TABLF.S.

Hours	Mid.	J	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.	Means.

Declination E $\mathrm{O}^{\circ}+$
Winter.

Months.	,	,	,	,	,	,	,	,	,	,	,	,	,	,		,	,	,	,	,	,	,	,	,	,	,
January	36.6	36.5	$36 \cdot 5$	365	36.5	$36 \cdot 2$	36.0	358	$36 \cdot 4$	37.5	37.9	377	$37 * 4$	$37^{\circ} 2$	$36 \cdot 5$	$36 \cdot 1$	$36 \cdot 3$	$36 \cdot 8$	$3^{6} 7$	$36 \cdot 8$	$36 \cdot 8$	$36 \cdot 6$	$36 \cdot 7$	$36 \cdot 6$	366	36.7
February	36.2	36.2	36.1	36.0	35*9	35.6	$35^{\circ} \mathbf{2}$	$35^{\circ} \mathrm{I}$	$36 \cdot 1$	37.2	$38 \cdot 3$	38.6	38\%	37.2	$36 \cdot 2$	$35^{\circ} 7$	357	35^{8}	35.9	$36 \cdot 0$	$36 \cdot 1$	$36 \cdot 0$	36.0	360	$36 \cdot 2$	36.3
March	35.9	$35^{\prime} 9$	35'9	35'7	35'6	$35 \cdot 3$	35^{-2}	35.8	$36 \cdot 8$	37.5	374	36.6	35.6	$34 \% 7$	$34 \cdot 5$	35°	357	36%	35%	$35^{\circ} 7$	$35 \cdot 8$	$35^{\prime} 8$	$35 \cdot 6$	357	357	$35 \cdot 8$
October	329	33°	33°	32*9	3299	327	327	33.6	345	34.6	$33 \cdot 8$	327	31.6	31'5	32.0	32'9	$33^{\prime} 4$	$33^{\prime} 0$	$32 \cdot 5$	$32 \cdot 8$	$32 \cdot 8$	327	327	$32 \cdot 8$	32.9	32'9
November	325	$32 \cdot 6$	$32 \cdot 5$	324	$32^{\prime 2}$	32.2	$32 \cdot 2$	32*3	32'9	$33 \cdot 3$	33'1	$32 \cdot 5$	32'4	32.5	$32 \cdot 6$	32.5	32'5	32.5	$32 \cdot 3$	$32^{\circ} 4$	32.4	323	32-3	32.4	$32 \cdot 6$	$32 \cdot 5$
December	$32 \cdot 6$	32.6	32.6	$32 \cdot 5$	32.5	$32 \cdot 3$	$32 \cdot 1$	3199	32.4	32.9	33^{-1}	$32 \cdot 5$	32*3	32.5	32.7	$33^{\prime} 1$	33.4	32.9	327	32.6	32.6	32'5	326	$32 \cdot 6$	32.6	32.6
Means	34.5	345	34.4	343	34.3	34. 1	33'9	$34^{1} 1$	$34 \cdot 9$	35.5	$35 \cdot 6$	$35^{\prime} 1$	$34 \cdot 6$	34,3	34^{\prime} I	34.2	34.5	34.5	$34 \cdot 3$	34.4	34.4	34.3	34'3	34%	34:4	34.5

Summer.

April .	$35^{\prime} 3$	353	$35 \cdot 4$	$35^{\prime} 3$	$35^{\prime 2}$	35°	359	370	$36 \cdot 8$	$36 \cdot 2$	$35 \cdot 3$	34'3	33.2	330	$33 * 7$	$34 * 3$	35*1	$35^{\prime} 4$	$35^{\circ} 4$	$35^{\prime} 3$	$35^{\prime \prime}$	35°	35°	35^{11}	$35^{\circ} 2$	35'1
May	$35 \cdot 5$	35.5	35.6	35'7	35.6	35^{8}	37.0	379	$38 \cdot 2$	37'3	$35 \cdot 6$	$34 \cdot 3$	33.4	334	340	34.6	$35^{\circ} 2$	357	$35^{\circ} 6$	35°	$35^{\circ} \mathrm{I}$	$35^{\prime} 1$	$35^{\prime 2}$	$35^{\circ} 3$	353	$35^{\circ} 5$
June	34'6	34.8	34.8	34.8	34'9	35°	$36 \cdot 3$	$36 \cdot 8$	36.6	35^{-8}	$34^{\circ} 7$	$33 \cdot 4$	32.6	32.4	32.6	32'9	33'8	34.6	34.9	34.6	345	344	$34^{\circ} 4$	34.6	34.7	34.5
July	33.9	34't	34.3	$34 \cdot 3$	34.4	34.6	35^{-8}	36.9	374	36.5	35°	33.6	32.5	32.0	$32 \cdot 1$	$32 \cdot 6$	33.4	34*	$34 * 3$	$33^{\prime \prime} 9$	337	33%	$33 \cdot 8$	34\%	$33^{\prime} 9$	34.2
Aug ${ }^{\text {ast }}$	$33^{\prime 2}$	$33^{\prime 2}$	33.4	$33 \cdot 5$	33.7	34'0	35.5	36.4	35.9	$34^{\prime} 7$	33.3	32.5	319	31.7	32.2	331	33.9	34’3	33.8	33'1	33°	329	329	33'1	33' ${ }^{\prime}$	33.6
Sept ember	$33 \cdot 4$	335	33.6	33.6	33.6	33.6	34.5	36%	$36 \cdot 3$	$35^{\circ} 3$	34\%	328	31.6	312	31.6	$32 \cdot 5$	$33^{\prime} 4$	$33^{8} 8$	33.4	334	33.3	$33^{\prime 2}$	$33^{\prime} 1$	33.2	$33 \cdot 3$	33.5
Means	343	34.4	34.5	$3+5$	34.6	34.7	$35 \cdot 8$	$36 \cdot 8$	36'9	$36 \cdot 0$	34.7	33.5	32.5	32'3	327	33.3	$34^{\circ} 1$	34.6	34^{6}	34'2	34'1	34^{\prime}	$34^{*} 1$	$34^{\circ} 2$	$34^{\prime} 3$	$34^{\circ} 4$

Diurnal Inequality of the Declination at Toungoo as deduced from the preceding Table.

Hours,	Mid.	1	2	3	4	5	6	7	8	\bigcirc	10	11	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.
W inter.																									
Months.	γ	γ	γ	$\boldsymbol{\gamma}$	7	7	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	7	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	γ	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	γ	7
January	- -0.1	-0.2	-0.2	-0.2	-0.2	-0.5	-7	-0.9	-0.3	+0.8	+12	+1.0	+0.7	+o'5	-0.2	-0.6	-0'4	+0.1	00°	+0.1	+0.1	-0.1	00	$-0^{\circ} 1$	-0'1
February	. -0.1	-0.1	-0.2	-0.3	-0_{4}	-0.7	-1.1	-12	-0.2	+0.9	+2\%0	+23	+177	+0.9	-0.1	-0.6	-0.6	-0.5	-0.4	-0.3	- ${ }^{\prime}$	-0.3	-0.3	-0.3	-0.1
March .	. $+0 \cdot 1$	+0.1	+0.1	-0.1	-0.2	-0.5	-0.6	000	+100	+r7	+1.6	+0.8	-0.2	-1'I	-1.3	$\longrightarrow .8$	-0'1	+0.2	-0.1	-0.1	00	0%	-0.2	-0:1	$\rightarrow 0.1$
October	- 0'0	+0.1	+O. 1	00	O'0	-0.2	-0.2	+0.7	+1.6	+17	+0.9	-0.2	-1.3	-14	-0.9	0%	+0.5	$+0.1$	-0.4	-0.1	-0.1	-0:2	-0.2	-0.1	0%
November	- $0 \cdot 0$	+0.1	00	-0.1	-0.3	-0.3	-0.3	-0.2	+0.4	+0.8	+0.6	$0 \% 0$	$\cdots \mathrm{O}$	$0 \cdot 0$	+0.1	$0^{\circ} \mathrm{O}$	00	000	-0.2	$\cdots 1$	-0.1	-0.2	-0.2	-0.1	+0.1
December	0%	$0 \cdot 0$	00	-0.1	-0.1	-0.3	-0.5	-0.7	-0.2	+0.3	+0.5	-0.1	-0.3	-0.1	+0.1	+0.5	+0.8	+0.3	+0.1	00	0.0	-0.1	0%	00	000
Means	- 000	00	-0. 1	-0.2	-0.2	-0.4	-0.6	-0.4	+0.4	+ r°	+13	$+0.6$	+0.1	-0.2	-0.4	-0.3	00	00	-0.2	-0. 1	-0'1	-0.2	$0 \cdot 2$	-0.1	

\footnotetext{

- دawwns

N.B. - When the sign is + the magnet points to the East and when - to the West of the mean position.

Hourly Means of Horisontal Force in C. G. S. Units (corrected for temperature) at Toungoo from the selected quiet days in 1908.

Hours.	Mid.	1	2	3	4	5^{*}	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.	Meass.
$38,000+\quad$ Winter.																										
Months.	γ	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	7	7	$\boldsymbol{\gamma}$	7	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	7	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	γ	γ	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$
January	757	759	759	759	760	761	764	766	770	777	781	786	781	772	768	765	764	764	764	763	759	759	760	761	762	766
February	756	754	7:6	757	757	758	759	763	771	781	758	792	794	790	783	774	767	761	759	758	758	757	759	758	757	767
March	753	753	753	755	756	758	761	763	772	785	799	810	812	806	790	775	76	758	757	758	755	752	752	754	757	769
October	$7+9$	748	749	750	749	750	752	754	763	775	791	802	804	794	781	770	762	759	759	759	756	754	755	755	756	764
November	752	752	751	753	753	755	757	761	767	776	786	791	788	780	769	763	758	756	756	756	754	756	756	756	755	763
December	755	757	756	757	757	768	761	766	774	781	786	786	785	779	771	767	762	756	756	755	755	755	756	756	758	764
Means	754	754	754	755	755	757	759	762	770	779	789	795	794	787	777	769	763	759	759	758	756	756	756	757	758	766
Summer.																										
April	740	740	741	743	$7+4$	748	748	74^{8}	761	782	794	803	802	793	781	766	755	745	743	743	741	742	743	745	748	75^{8}
May .	747	$7+7$	$7+9$	749	750	752	754	759	772	786	798	803	797	790	779	770	789	752	750	751	750	748	745	748	749	763
June .	75°	35^{1}	751	752	75^{2}	753	754	757	765	775	787	793	794	792	787	775	763	75^{2}	746	747	748	750	750	753	750	762
July	753	$75+$	753	755	755	755	758	763	773	783	792	798	797	791	784	772	761	754	752	755	755	756	757	757	756	766
August	748	75°	750	753	750	749	751	753	764	774	784	790	790	786	780	770	760	754	753	755	754	754	75^{2}	752	755	762
September	740	742	7+1	739	738	737	738	733	733	746	762	772	776	777	768	759	750	744	745	745	742	740	741	742	742	748
Means	746	747	748	748	$7+8$	749	751	752	761	774	786	793	793	788	780	769	758	750	748	749	74^{8}	749	748	750	750	760

Diurnal Inequality of the Horizontal Force at Toungoo as deduced from the preceding Table.

Houre.	Mid.	1	3	3	4	5	6	7	8	9	10	18	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.
Winter.																									
Months.	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	7	7	$\boldsymbol{\gamma}$	7	7	7	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\tau}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	γ	$\boldsymbol{\gamma}$	γ	γ
January	-9	-7	-7	-7	-6	-5	-2	0	+4	+11	+15	$+20$	+ 15	+ 6	+2	-1	-2	-2	-2	-3	-7	-7	-6	-5	-4
February	-11	-13	-11	-10	-10	-9	-8	-4	+4	+14	+21	+25	+27	+23	$+16$	+7	0	-6	-8	-9	-9	-10	-8	-9	-10
March . .	. -16	-16	-16	-I4	-13	-II	-8	-6	+3	$+16$	$+30$	$+41$	+43	$+37$	+21	+6	-5	-II	-12	-II	-14	-17	-57	-15	-12
October	- -15	- 16	-15	- $1+$	-15	-14	-12	-10	-1	+11	+27	$+38$	+40	+30	+17	+6	-2	-5	-5	$\leftarrow 5$	-8	-10	-9	-9	-8
November	- - It	- 11	-12	-10	-10	-8	-6	-2	+4	+13	+23	+28	+25	+17	$+6$	0	-5	-7	-7	-7	-9	-7	-7	-7	-8
December	-9	-7	-8	-7	-7	-6	-3	+2	$+10$	+17	+22	+22	+21	+15	+7	+3	-2	-8	-8	-9	-9	-9	-8	-8	-6
Means -	-12	-12	-12	- 11	- It	-9	-7	-4	+4	+13	+23	+29	+28	+21	+11	+3	-3	-7	-7	-8	-10	-10	- 10	-9	-8
Summer.																									
April .	-18	-13	-17	-15	-14	-10	-10	-10	+3	+24	$+36$	+45	+44	+35	+23	+8	-3	-13	-15	-15	-17	- 16			
May .	- -16	-16	-14	- I_{4}	-13	- 11	-9	-4	+9	+23	+35	$+40$	+ 34	+27	+16	+7	-4	-11	-15	-12	-13	-16	-15		-10
June	- -12														$+10$	+7	-4	-11	-13	-12	-13	-15	-18	-15	-14
Juno	- -12	- II	-11	-10	-10	-9	-8	-3	+3	+13	+25	+31	+32	$+30$	+25	$+13$	+1	-10	-16	-15	-14	-12	- 12	-9	-12
Jaly	. -13	-12	-13	-11	-11	- 11	-8	-3	+7	$+17$	+26	+32	+3I	+25	+18	+6	-5	-12	-14	- 11				-9	
August	-14	-12	-12	-10	-12	-13	- 11	-9	+2	+12	+22	+32 +28	+28 +28	+25 +24	+18 +18	+6 +8		-12 -8	-14 -9	-11 -7	-11 -8	-10	-9	-9	-10
September	-8	-6						,				+28	+28	$+24$	+18	+8	-2	-8	-9	-7	-8	-8	-10	-10	-7
September	-8	- 6	-7	-9	-10	- 11	-10	-15	-15	-2	+14	+24	+28	+29	$+20$	+ 11	$+2$	-4	-3	-3	-6	-8	-7	-6	-6
Means	. - 14	-13	-12	-12	-12	-11		-8	+1																
						-	9		$+1$	+14	+26	+33	+33	+28	+20	+9	-2	-10	-12	-11	-12	-12	-12	-10	-10

Hourly Means of Vertical Force in C. G. S. Units (corrected for temperature) at Toungoo from the selected quiet days in 1908.

Houss.	Mid.	1	2	3	4	5	6	7	${ }^{8}$	9	10	11	Noon.	${ }^{13}$	${ }^{14}$	I5	16	17	18	19	20	11	22	23	Mid.	Means

${ }_{16000}$ C.G.S. + Winter.																										
Months.	γ	γ	γ	$\boldsymbol{\gamma}$	γ	\boldsymbol{r}	γ	\boldsymbol{r}	γ	γ	${ }^{\gamma}$	r	γ	γ	γ	$\boldsymbol{\gamma}$	${ }^{\gamma}$	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	γ	${ }^{7}$	7	
January	472	472	471	471	471	471	471	47^{1}	474	474	468	464	461	46 I	463	465	468	470	469	470	471	471	472	473	473	469
February	472	47^{2}	472	471	471	471	470	471	471	467	464	459	451	450	452	458	461	464	467	469	471	471	47^{2}	473	474	466
March	479	479	479	479	47 s	47^{8}	480	480	47^{8}	471	46_{3}	459	459	464	471	477	478	476	476	47^{8}	479	479	480	48 t	482	475
October	494	491.	494	494	$49+$	494	496	49^{8}	493	483	476	474	476	484	49:	495	495	450	490	492	493	493	494	494	495	450
November	493	499	499	498	499	499	500	503	499	495	488	486	489	492	494	495	49.5	495	497	498	498	498	499	500	500	496
December	474	473	473	473	473	473	474	474	475	471	465	464	469	473	475	477	475	474	474	475	476	477	477	477	477	473
Means	+32	482	+8!	481	481	48 I	482	483	482	477	471	468	468	471	474	47^{8}	479	478	477	480	481	482	482	$4{ }^{8} 3$	483	47^{8}

Summer.																										
April .	498	498	498	40^{8}	498	499	503	499	491	$4^{8}+$	479	476	479	486	494	497	497	496	494	493	494	494	495	496	497	493
May	+82	482	481	4^{81}	481	482	486	485	479	471	467	468	469	471	477	482	485	485	481	480	480	481	482	483	483	479
June	480	480	480	480	479	48 i	483	48 t	477	471	470	469	467	472	475	477	48 I	48!	479	476	476	477	478	478	479	477
July	482	481	481	481	48 I	483	487	485	480	471	464	46 I	461	467	472	477	479	480	478	477	479	480	480	481	480	477
August	475	476	476	476	476	477	4^{88}	477	470	464	463	466	468	473	476	479	480	475	471	471	47^{2}	472	474	474	474	473
September	482	483	483	432	482	482	487	487	477	466	459	456	457	465	473	480	482	481	479	479	480	480	481	482	$4{ }^{83}$	477
Means	483	4^{83}	483	$4{ }^{8} 3$	483	484	${ }_{48} 8$	486	479	471	467	466	467	472	478	482	484	483	480	479	480	4^{81}	482	482	483	479

Diurnal Inequality of the Vertical Force at Toungoo as deduced from the preceding Table.

Hours.	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.

Winter.

Months.	γ	7	$\boldsymbol{\gamma}$	7	7	γ	$\boldsymbol{\gamma}$	γ	γ	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	γ										
January	+3	+3	+2	+2	+2	+2	+2	+2	+5	+5	-1	-5	-8	-8	-6	-4	-1	+1	0	+1	+2	+2	+3	+4	+4
February	+6	+6	$+6$	+5	+5	+5	+4	+5	+5	+ I	-2	-7	-15	-16	-14	-8	-5	-2	+1	+3	+5	+5	+6	+7	$+8$
March . .	+t	+4	+4	+4	+3	+3	+5	+5	+3	-4	-12	-16	-16	-II	-4	+2	+3	+1	+1	+3	+4	$+4$	+5	+6	+6
October . .	+4	+4	+4	+4	+4	+4	+6	+8	+3	-7	-14	-16	-14	-6	$+1$	$+5$	+5	0	0	+2	+3	$+3$	+4	+4	+5
November - .	$+2$	+3	+3	+2	+3	+3	+4	+6	+3	-1	-8	-10	-7	-4	-2	-1	-I	-1	+1	+2	+2	+2	+3	$+4$	+4
December . .	+1	\bigcirc	0	0	0	0	$\underline{+1}$	+ 1	+2	-2	-8	-9	-4	0	+2	+4	+3	+1	+1	+2	+3	+ +	+4	+4	+4
Means .	+4	+4	+3	+3	+3	+3	+4	+5	+4	-I	-7	-10	-10	-7	-4	0	+1	0	-1	+2	+3	+4	+4	+5	+5

Summer.

N.B. - When the sign is + the Vertical force is more, and when - it is less than the mean.
Hourly Means of the Dip as deterinined at Toungoo from the selected quiet days in 1908.

Heurs.	Mid.	-	3	3	4	5	6	1	8	9	ro	\ldots	Noon.	13	14	15	16	17	18	19	20	21	23	23	Mid	Means.
Dip. $22^{\circ}+\quad$ Winter.																										
Months.	,	,	,	,	,	,	,	.	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,
January	61.6	68'3	614	614	614	613	613	61.2	$61 \cdot 3$	61.1	$60^{\circ} 5$	$60^{\circ} 0$	60.0	$60 \cdot 3$	$60 \cdot 5$	$60 \cdot 8$	610	61.2	$6 \mathrm{I}^{1}$	$6 \mathrm{r} \cdot 2$	61.4	61.4	615	615	615	61.1
Pebruary	61.6	617	61.6	61.5	61.5	$61 \cdot 5$	$61 \cdot 3$	613	61.0	$60 \cdot 4$	60\%	59'5	58.8	58.9	59\%2	60°	60.4	60.8	61.1	613	$6 \cdot 5$	61.5	6r'5	61.6	61.7	60.8
March	62.2	52.2	62.2	62.1	62°	62\%	62.0	630	61.5	60.6	59.5	58.9	588	59.4	$60 \cdot 4$	614	61.8	61.8	619	620	62.1	62.3	62.3	62.2	62.2	61.4
October	63.5	$63 \cdot 5$	$6{ }^{3} 5$	63.5	63.5	63.5	$63 \cdot 5$	63.6	62.9	61.8	60.8	60.3	603	613	62.2	62.9	631	62'9	$62^{\prime} 9$	63°	63.2	$63 \cdot 2$	$63^{3} 3$	$63 \cdot 3$	63.3	62.7
November	637	63.8	638	636	63'7	637	63'7	63.7	63.3	$62 \cdot 7$	${ }_{61} 8$	6 r 5	61.8	$62 \cdot 3$	62.9	63.1	633	633	63.5	63.5	63.6	$63 \cdot 5$	63.6	63.7	63.7	63.2
December	618	61.6	61.7	616	616	61.6	61.6	614	6 r 3	$60 \% 7$	$60 \cdot 1$	600	60.5	$60^{\circ} 9$	6i3	6 I 6	617	617?	617	$61 \cdot 9$	619	620	62.0	62.0	61.9	61.4
Means	624	$6^{31} 4$	62.4	$62 \cdot 3$	62.3	623	$62 \cdot 2$	$62 \cdot 2$	$6 \cdot 9$	612	$60 \cdot 5$	60.0	60%	$60^{\circ} 5$	611	61.6	6r.9	62'0	62\%	$62 \cdot 2$	62.3	62.3	62\%	62.4	62.4	61.8
Summer.																										
April	64.1	64.1	64°	64°	639	63.9	64.2	63.9	62'9	617	60,9	60.4	$60 \% 7$	$61 \cdot 5$	62'5	63^{2}	63:5	63.7	637	$63 \cdot 6$	63.7	63.7	637	63.7	63.7	6311
May	62.6	626	62.5	62.5	62.5	$62 \cdot 5$	627	62.5	61.6	$60 \cdot 5$	59.9	59:8	60.1	60.4	$61 \cdot 2$	61.9	62.6	627	62.5	62.4	62.4	62.5	62.7	62.7	62.7	6r9
June	62.4	63.4	62.4	$62 \cdot 3$	623	$62 \cdot 3$	62.5	63.2	617	$60 \cdot 9$	60.4	60.2	600	60.5	60\%	614	620	624	$6 z_{4}$	62.2	62'1	62.2	62.2	62.1	62.3	${ }_{61} 8$
July	62.4	62.3	62.3	$62 \cdot 3$	$62 \cdot 3$	62.5	62.7	$62 \cdot 3$	617	607	59.9	59.4	59.5	$60 \cdot 1$	$60 \cdot 7$	61.5	61.9	62.3	$62 \cdot 2$	62.0	$62 \cdot 1$	62.2	62.2	62.2	62.2	617
Augus*	631	6×1	621	62°	62.1	62.2	634	62.1	61.2	60.4	60°	$60 \cdot 1$	602	6007	61.1	$6 \mathrm{x} \cdot 7$	621	$61 \cdot 9$	$6{ }^{1} 6$	61.5	617	617	$6{ }^{1} 9$	619	61.8	6r'5
September	809	629	62-8	62.9	$8^{2} \mathbf{2} 9$	62.9	63.3	635	627	61.5	60.4	59,9	59.8	60\%4	613	62.1	62.5	62.7	62.5	62.5	62.7	$62^{\prime} 7$	62.7	$62 \cdot 8$	62.9	62^{2}
Means	62.8	62.7	627	62\%	627	627	63.0	62.8	620	6 ro	$60 \cdot 3$	600	60.1	60.6	613	62\%	62.4	62.6	625	62.4	62.5	62.5	62.6	62.6	62.6	62.0

NO. 26 PARTY (MAGNETIC).
Dimenal Inequality of the Dif at Tonngoo as dedaced from the preceding Table.

Hows.	Mid		3	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20	21	22	${ }^{23}$	Mid.
Winter.																									
Months.							,	,								,	,	,	,	,		,		,	
January	+0.5	+0.4	+os	$+0.3$	+0.3	+02	+0.2	+0.1	$+\sigma a$	0	-0.6	$-1 \cdot 3$	-11	-8	$\rightarrow 0.6$	-0'3	-0.1	+0:1	$0 \cdot 5$	+0.1	+0.3	+0.3	+0.4	+0.4	+0.4
February	+0.8	+0.9	+0.8	$+\infty$	+0.7	+0.7	+0.5	+0'5	+0.2	04	-0.8	-1/3	-2.0	-1'9	- I. 6	-0.8	-0.4	0×0	+0.3	+0.5	+0.7	+0.7	+0.7	+08	+0.9
March .	+0.8	+0.8	+0.8	+0\%	+0.6	+0.6	+0.6	+0.6	+0.1	-0.	-1'9	-25	-36	-20	-10	$0 \cdot 0$	$+0^{\prime} 4$	+0.4	+0.5	+0.6	$+07$	$+0^{\circ} 9$	+0.9	+0'9	+c:8
Octuber	+0.8	+0.8	+0.8	+0.8	+0.8	+0.8	+0.8	+0.9	+0.2		-1'9	-24	-24	-14	-0.5	+0.2	+0.4	+0.2	+0.2	+0.3	+0.5				
November	+o. 5	+0.6	+0.6	+0.4	+0'5	+o'5	+0.5												+ 2	$+{ }^{+}$	+os	$+0.5$	+0.6	+0.6	+o6
								+0,	+oI	$\bigcirc{ }^{\circ} 5$	-1'4	- 1 -	-14	-0.9	-0.3	-0.1	+0.1	+0.1	+0.3	+0.3	$+0.4$	+0.3	+0.4	$+0_{5}$	+0.5
December	+0.4	+0.2	+0.3	+0.2	+0.2	+0.2	$+0^{2}$	$0 \cdot 0$	-0.1	$\bigcirc \cdot 7$	-13	-1.4	-o'9	-0.5	-0.1	+0.2	+0.3	$+0.3$	$+0.3$	+0.5	+0'5	+0.6	+c. 6	+0.6	+0.5
Means.	+06	+0.6	+0.6	+0.5	+o. 5	+0.5	+0.4	+0.4	+0.1	-0.6															
							+ 4	+04	+01	-06	-13	-18	-1.8	-13	-0.7	-0.2	+0'I	+0.2	+0.2	+04	+0'5	+0.5	+0.6	+0.6	+0.6

Houri'y Means of the Declination as determined at Kodaikanal from the selected quiet days in 1908.

Hours.	Mid.	1	3	3	4	5	6	7	8	9	10	11	Noon.	13	34	- 15	16	17	18	19	20	21	22	33	Mid.	Mcans.

Declination W $\mathrm{O}^{\circ}+$
Winter.

			,	,	,	,	,		,	,	,				,	,	,	,	,	,	,	,	,	,	,	,
January	433	+3'3	43.1	435	$43^{\prime} 7$	438	440^{\prime}	443	439	43.4	$43 \cdot 1$	43°	43.2	42.4	$42^{\prime} \mathrm{I}$	42.4	$42 \cdot 8$	42*9	43^{11}	$43 \cdot 1$	$43^{\circ} 2$	$43 \cdot 2$	$43 \cdot 4$	435	43*4	43^{2}
February	439	+39	$4{ }^{\circ}$	H1	+ 7	443	446	45'I	445	43.6	$42 \cdot 8$	42.6	$42 \cdot 6$	$42 \cdot 5$	427	43°	$43 \cdot 3$	$43^{\circ} 7$	43.8	437	43.7	$43 \cdot 8$	44°	44°	43.9	437
March	$4+3$	43	44^{+4}	$4+6$	44^{6}	44.8	449	44.5	44°	436	$43 \cdot 4$	$44^{\prime} 1$	$44^{\prime 7}$	447	447	$44^{\circ} 2$	44^{2}	443	443	$44^{\circ}+$	44.5	44.5	44.5	44.4	444	$44^{*} 4$
October	463	+6.3	463	463	464	$46 \cdot 6$	468	$+6.5$	$46 \cdot 1$	460	467	47.5	47'9	$47^{\circ} 6$	47^{2}	$46 \cdot 4$	$46 \cdot 0$	$46 \cdot 2$	465	$46 \cdot 5$	$46 \cdot 5$	$46 \cdot 5$	$46 \cdot 6$	466	46.4	466
November	47^{1}	+7*	47^{2}	+73	474	47'4	474	476	47^{2}	47.1	47%	479	47.8	$47 \% 2$	$46 \cdot 6$	$46 \cdot 6$	$46 \cdot 9$	$47 \cdot 2$	472	47*1	47.2	$47^{\circ} 2$	473	47^{2}	471	$47^{\prime 2}$
December	475	+75	+7'5	476	477	$48 \cdot 0$	481	48.4	+8.3	480	47.6	47.9	478	475	475	47°	467	$46 \cdot 8$	47%	$47 * 4$	47.4	475	475	475	47 '5	47.6
Means	+5*4	45%	+5\%	45^{6}	457	45^{8}	460	46.1	457	$45^{\prime} 3$	$45^{\prime 2}$	$45 \cdot 5$	45%	453	$45 \cdot 1$	449	$45^{\circ} \mathrm{O}$	45^{2}	$45^{\circ} 4$	+54	$45 \cdot 4$	$45 \cdot 5$	$45 \cdot 6$	$45^{\prime} 5$	45.5	45.5

Summer.

Afril	472	44.1	44^{2}	44^{2}	443	44.3	43.9	43'1	43°	$43^{\prime} 7$	$44 *$	$44^{\circ} 8$	45%	457	453	44.6	440	$43^{\circ 8}$	44°	$44^{\circ} 3$	$44 * 4$	44.5	$44 \cdot 3$	44.3	44*1	443
May	4.6	4+5	44.4	$4+5$	444	44%	$44^{\circ} \mathrm{O}$	$43^{\circ} 4$	$43 \cdot 3$	44°	45°	$45 \cdot 5$	$45 \cdot 0$	$46 \cdot 0$	$45 \cdot 3$	448	442	44.2	44.5	$44^{\prime} 9$	44*9	45°	44.9	44%	$4{ }^{6}$	44^{6}
June	+522	$45^{\prime} 1$	$45^{\prime \prime}$	45*1	45^{2}	45°	443	436	43^{8}	448	45.6	46.5	472	46.8	46.0	$45^{\circ} 8$	$45^{\circ} 5$	$45^{\prime 2}$	45°	45'4	45.5	$45^{\prime} 5$	45.5	45.4	+5'3	453
July	456	$45^{\circ}+$	$45 \cdot 4$	45*4	$45^{\circ} 2$	$45^{\circ} \mathrm{I}$	44.5	435	434	44^{3}	$45^{\prime 2}$	46.2	46.8	$46 \cdot 6$	46.6	$45^{\circ} 9$	$45^{\prime} 5$	45'I	45.3	45^{8}	45\%9	$45^{\circ} 9$	45^{8}	457	45.6	$45^{\circ} 4$
August	46.2	46't	45.9	45×8	457	$45^{\circ} 5$	445	$43 \cdot 8$	44.5	$45^{\prime} 7$	46	477	48	$48 \cdot 2$	47×6	$46 \cdot 6$	457	45'1	+5'5	$46 \cdot 2$	$46 \cdot 4$	$46 \cdot 4$	463	$46 \cdot 3$	462	$46 \cdot 1$
September.	465	$46 \cdot 3$	$46 \cdot 3$	46.2	$46 \cdot 2$	46.2	45't	44^{2}	44^{2}	$45^{\circ} \mathrm{I}$	$45^{\prime 8}$	47°	48.0	481	$47^{\circ} 4$	$46 \cdot 6$	46.1	46\%	46.1	$46 \cdot 3$	$46 \cdot 4$	$46 \cdot 5$	$46 \cdot 6$	46.6	$46 \cdot 4$	$46 \cdot 3$
Means	45'4	$45 \cdot 3$	45^{2}	$45^{\prime 2}$	45°	$45 \cdot 1$	44.4	436	437	44.6	45.5	$46 \cdot 3$	470	$46 \cdot 9$	$46 \cdot 4$	45%	45^{-2}	449	45^{1}	45.5	456	45^{6}	45\%	$45 \cdot 5$	454	45.3

Diurnal Inequality of the Declination at Kodaikanal as deduced from the preceding Table.

Hoürei	Mid.	1	2	3	4	5	σ	7	8	9	10	13	Noon.	13	14	15	16	17	18	19	20	${ }^{21}$	22	23	Mid.
Winter.																									
Months.	$\boldsymbol{\gamma}$	7	\boldsymbol{r}	$\boldsymbol{\gamma}$	7	$\boldsymbol{\gamma}$	\boldsymbol{r}	\boldsymbol{r}	7	7	\boldsymbol{r}	7	7	\boldsymbol{r}	7	\boldsymbol{r}	$\boldsymbol{\gamma}$	γ	γ	7	7	$\boldsymbol{\gamma}$	γ	γ	\boldsymbol{r}
January		0.1	0.2	3	-0.5	-0.6	-0.8	-1.1	-0.7	-0.2	+0.1	+0.1	00	+0.8	$+\cdot \mathrm{I}$	+0.8	+0.4	$+0.3$	+ot	+0.1	$0 \cdot 0$	00	-0.2	-0.3	-0.2
February	-0.2	-0:3	$\rightarrow 3$	$\rightarrow 0.4$	-0'4	-0.6	-0.9	-14	-0.8	+0'1	+ $0 \cdot 9$	+1.1	+1'1	+1.2	+10	+0.7	$+0.4$	$0 \cdot 0$	-0.1	o'o	0.0	-0.1	+0.3	-0.3	-0.2
March .	- +0.1	+0.1	\bigcirc	-0.2	-0.2	-0.4	-0.5	-0.1	+0.4	+0.8	+ r 0	$+0_{3}$	-0.3	-0.3	-0.3	+0.2	+0.2	+0.1	+0.1	0\%o	-0.1	-0.1	-0.1	00	$0 \cdot 0$
October	- +0.3	$+0.3$	+0.3	$+0.3$	+0.2	$0 \cdot 0$	-0.2	+0.1	+0.5	+06	-0.1	-0.9	-13	-1.0	\cdots	$+0^{\circ} 2$	+0.6	+0.4	+0. 1	+0.1	+0.1	+0.1	00	$0 \cdot 0$	+0.2
November	- +0.1	+0.1	00	-0. 1	-0.2	-0.2	-0.2	-0.4	$0 \cdot 0$	+0.1	-0.2	-0.7	-0.6	$0 \cdot 0$	+0.6	+0.6	+0.3	00	00	+0.1	0.0	00	-0.1	00	+0.1
December	+0.1	+0.1	+0.1	$0{ }^{\circ}$	$-0^{\circ} \mathrm{I}$	-0.4	-0.5	-8.8	-0.7	-0.4	-0.2	-0.3	-0.2	+o. 1	+0.1	+0.6	+0.9	$+0.8$	+0.2	+0.2	+ 0.2	+0.1	-0.1	+0.1	+0.1
Means .	+0.1	$+0.1$		$0 \cdot 1$	-0.2	-0.3	-0.5	-0.6	-0.2	+02	$+0.3$		$-0^{\circ} 2$	+0.2	+0.4	+0.6	+0.5	+03	+0.1	$+0.1$	+0.1		-0.1	0	00

Mourly Mcans of Horisontal Force in C. G. S. Units (corrected for temperature) at Kodaikinal from the selected guiet days in 1908.

Hours.	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	:6	17	18	19	20	21	22	23	Mid.	Means.

${ }^{3} 30000$ Win																										
Months.	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	\boldsymbol{T}	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	7	γ	$\boldsymbol{\gamma}$						
January	477	$4{ }^{18}$	419	418	420	419	42 I	426	436	449	465	473	469	466	462	457	448	438	429	425	421	422	42 I	420	420	436
February	412	415	415	415	416	416	416	427	439	453	464	476	471	467	461	455	444	435	428	423	421	419	417	415	415	434
March	411	$+15$	415	415	416	415	413	423	44^{8}	483	512	527	519	487	45^{1}	425	416	420	424	418	415	413	414	414	415	43^{8}
October	408	408	410	410	410	410	410	42 L	447	483	512	519	506	477	452	433	426	427	426	421	419	418	416	414	415	437
November	412	413	413	414	414	414	416	424	4.37	45^{8}	474	476	465	454	414	436	430	427	423	420	420	418	415	$4{ }^{13}$	416	430
Decernber	434	423	423	422	422	422	423	434	454	475	492	497	485	468	44^{8}	43 I	427	428	427	425	424	425	424	425	426	439
Means	414	415	4^{16}	416	416	416	417	426	444	467	487	495	486	470	453	440	432	429	426	422	420	419	418	417	418	436
Summer.																										
April .	400	403	403	405	405	404	403	419	451	485	511	513	495	469	442	427	422	417	413	410	409	408	409	408	409	430
May	417	413	+14	413	415	$4{ }^{1} 4$	417	427	451	482	504	508	499	478	455	429	417	416	419	416	413	410	411	411	414	435
June	416	417	418	418	$+18$	416	418	420	431	453	468	477	477	466	448	433	422	4:6	418	419	418	418	419	418	420	431
July .	42 I	422	423	422	422	+21	425	43°	445	466	488	497	487	470	45^{1}	433	422	419	422	423	423	423	423	423	425	438
August	415	+17	45	415	415	$+16$	420	430	446	460	470	466	455	440	430	425	426	429	431	427	425	423	421	422	422	431
September	401	+00	393	393	398	401	396	396	418	460	490	503	494	475	447	425	414	415	414	408	405	404	404	403	402	424
Means	411	412	412	+12	412	412	413	420	440	468	489	494	485	466	446	429	421	419	420	417	416	414	415	414	415	432

Hours.	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.

Winter.

.02000 C.G.S. $+\quad$ Winter.

Months.	γ	γ	γ	$\boldsymbol{\gamma}$	7	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	7	7	7	$\boldsymbol{\gamma}$	\boldsymbol{y}	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	γ	\boldsymbol{r}	γ								
January .	299	299	299	298	298	298	299	298	300	301	296	292	290	291	286	284	286	288	290	294	294	295	296	297	297	294
February	362	303	303	302	302	301	301	303	307	308	307	307	310	301	298	294	289	287	292	296	297	298	299	300	301	300
March	318	309	309	308	309	308	310	311	310	305	296	287	279	281	287	300	303	303	304	303	304	305	307	308	309	302
October	340	340	$3{ }^{3} 0$	340	34°	$3{ }^{10}$	342	343	340	332	324	317	318	319	321	325	33°	331	333	335	337	337	338	340	34I	333
Novamber	346	347	346	347	347	347	34^{8}	346	346	342	33^{8}	338	33^{8}	340	33^{8}	336	338	343	347	349	350	350	35^{1}	351	353	345
December	$36+$	363	363	363	364	364	365	365	362	358	353	349	34^{6}	343	$3+5$	354	358	456	359	360	360	362	362	363	363	358
Means	327	327	327	326	327	326	328	328	328	324	319	315	314	313	313	316	317	318	32 I	323	324	325	326	327	327	322

Summer.

April	214	$3!5$	314	315	315	316	319	320	314	306	299	291	288	290	293	300	304	305	306	309	310	312	313	314	315	308
May	311	311	312	312	312	8_{13}	315	316	313	303	295	297	295	299	302	312	317	315	313	314	315	317	318	319	319	310
June	333	333	333	332	333	334	33^{8}	339	3j8	334	331	329	326	329	331	333	333	333	331	329	330	332	332	332	33^{2}	332
July	33+	334	335	434	335	335	33^{8}	340	337	335	3.31	321	320	323	327	333	335	334	331	329	331	332	333	333	334	332
August	335	336	336	436	336	338	340	338	330	325	324	325	33.0	339	342	346	344	340	334	333	334	335	335	337	33^{8}	335
September	342	$3{ }^{2}$	34^{2}	$3+3$	3+3	34+	349	348	340	331	327	316	356	318	321	328	334	337	538	339	339	341	343	343	345	336
Means	328	329	329	329	329	330	333	334	329	322	$3{ }^{18}$	3'3	313	316	319	325	328	327	326	326	327	328	329	330	331	326

NO. 26 PARTY (MAGNETIC).
Diurnal Inequaltt; of the Vertical Force at Kodaikanal as deduced from the preceding Table.

Hous.	Mis.		2	3	+	s	${ }^{6}$	7	8	,	เo	"	Noon.	13	${ }^{14}$	is	16	${ }^{17}$	*	19	${ }^{20}$	${ }^{25}$	22	${ }^{23}$	Mid.
winter.																									
Menths.	γ	7	7	γ	γ	\checkmark	γ		7	4	7	7	γ	γ	7	7	7	r	γ	r	γ	γ	γ	γ	γ
January	+ 5	+5	+	+4	+4	+4	+5	+4	+6	+7	+2	-2	-4	-3	-8	- 0	-8	-6	-4	。	-	+1	+2	+3	+3
Fsbruary	+2	+3	+3	+2	+2	+	+1	+3	+	+8	+7	+7	+ 10	+	-2	-6	-1	-13	-8	-4	-3	\rightarrow	-1	-	+1
March	+6	+1	$+7$	+6	+	+6	+8	+	+8	+3	-6	-15	-23	$-2 t$	-15	-2	+1	+r	+	+	+2	+3	+5	+6	+7
Ocrober	+7	+7	+7	+ 9	+4	+7	+9	+16	+1	-1	-9	-r6	-15	-14	-12	-8	-3	-2	o	+2	+4	+4	+5	+7	+8
November	+1	+2	+	+2	+2	+2	+3	+1	+	-3	-1	-1	-7	-5	-7	\rightarrow	-7	-2	$+2$	+4	+	+	+6	+6	+8
Deceniber	+6	+ 3	+5	+ 5	+6	+6	+7	+7	+4	-	-5	-9	-12	-15	-13	-4	。	-2	+1	$+8$	+2	+4	+4	+5	+s
Mears	+ 5	+5	+5	+4	+s	+4	+6	+6	+6	+2	-3	\rightarrow	-8	-9	-9	-6	-5	-4	-1	+1	+2	+3	+	+5	+5

Hourly Means of the Dip as determined at Kodaikanal from the selected quiet days in 1908.

Hours.	Mid.	1	2	3	4	5	6	7	8	9	10	11	Noon.	13	14	15	16	17	18	19	20	21	22	23	Mid.	Means

Dip $3^{\circ}+$

Months.	,	1	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,
January	310	$3{ }^{\circ} \mathrm{O}$	31\%	309	30\%9	30'9	30'9	$30 \cdot 8$	3100	31.0	30.4	$30 \cdot 0$	29.9	$30^{\circ} 0$	29.5	29.4	29.6	29.8	$30 \cdot 1$	30'5	$30 \cdot 5$	$30 \cdot 6$	30'7	$30 \cdot 8$	$30 \cdot 8$	$30 \cdot 5$
February	313	$31 \cdot 3$	313	313	31.2	317	31.3	31.3	31.6	31.6	$3{ }^{1} 4$	31.4	317	30'9	$30 \cdot 6$	30'3	$29^{\circ} 9$	29.8	$30 \cdot 3$	30%	30.8	$30 \cdot 9$	31%	31.1	31.2	310
March	31.8	3199	3'9	318	31'9	31.8	$32 \cdot 0$	32.0	31.8	51.1	$30 \cdot 2$	293	28.6	28.9	29.7	31\%	313	313	31.4	313	31.4	315	31'7	31.8	319	$31 \cdot 1$
October	344	$3+8$	34.8	34.8	34.8	34.8	$3+9$	350	$34 \cdot 5$	33.6	$32 \cdot 7$	320	$32 \cdot 2$	32.5	$32 \cdot 3$	33.3	$33 \cdot 8$	$33 \cdot 8$	34%	$34^{\circ} 2$	34%	$34 * 4$	$34 \cdot 5$	$3+7$	$3+8$	34%
November	353	35.4	$35 \cdot 3$	35.8	35.4	$35^{\prime} 4$	$35^{\prime} 5$	35^{2}	35^{2}	347	342	34.2	34'3	34'5	$34^{\circ} 4$	$34^{\prime 2}$	$34^{\circ} 5$	34.9	$35 \cdot 3$	$35^{\circ} 5$	35.6	$35 \cdot 6$	35\%	357	359	351
December	369	$36 \cdot 8$	$36 \cdot 8$	$36 \cdot 8$	$36 \cdot 9$	36.9	37.0	36.9	36.5	36.0	$35 \cdot 5$	$35^{\prime} \mathrm{I}$	349	34'7	$35^{\circ} \mathrm{O}$	359	$36 \cdot 3$	36.1	36.4	36.5	365	36%	36.7	$36 \cdot 8$	$36 \cdot 8$	$36 \cdot 3$
Means	33.5	$33 \cdot 5$	33'5	$33 \cdot 5$	335	335	336	$33^{*} 5$	33.4	33°	32.4	$3^{\circ}{ }^{\circ}$	319	31'9	32%	324	32.6	$32 \cdot 6$	32'9	331	$33^{*} 2$	33.3	33.4	$33 \cdot 5$	33.6	$33^{\circ} 0$

Summer.

April .	32.4	32.5	324	32'5	$32 \cdot 5$	$32 \cdot 6$	$32 \cdot 9$	329	32'1	31.2	$30^{\circ} 4$	29.7	29.5	29.9	303	31'0	314	31'5	31^{16}	3'9	32*0	32*2	323	32.4	32*5	31•7
May .	32-3	32\%	32.2	32.2	32.2	$32 \cdot 3$	$32 \cdot 4$	32.5	$32 \cdot 1$	31.0	$30 \cdot 1$	30.3	$30^{\circ} \mathrm{I}$	30.6	$33^{\circ} \mathrm{O}$	$32 \cdot 1$	32.6	32.4	$32 \cdot 2$	$32 \cdot 3$	$32 \cdot 5$	327	$32 \cdot 7$	32'8	32:8	
June	3+1	$37^{\prime \prime}$	34^{1}	34°	34'1	$34^{\circ} 2$	$34 \cdot 5$	34.6	$3 \cdot 5$	$34^{\circ} \mathrm{O}$	33.6	$33 \cdot 4$	331	33.4	$33 \cdot 7$	34°	34'0	34*	33'9	337	33^{-8}	34°	34\%	34°	34*0	$34^{\circ} 0$
July	34^{11}	341	34.2	$34^{\prime} \mathrm{I}$	$34^{\circ} 2$	34.2	$34 \cdot 5$	$34 \cdot 6$	343	34°	335	32.5	$32 \cdot 5$	32.9	$33^{\prime} 3$	34°	34*2	34^{2}	33.9	337	339	34\%	34°	34'0	34 ${ }^{\text {¹ }}$	33*9
August	343	34.4	344	$34 * 4$	34'4	$34 \cdot 5$	347	34.5	$33 \cdot 6$	33'1	33°	33^{11}	$33 \cdot 6$	34.5	34*8	$35^{\prime 2}$	35°	$34^{\prime} 7$	$34^{* 1}$	34\%	$34^{\circ} 1$	34^{2}	34.2	347	34.5	34^{*}
September .	35\%	$33^{\circ} 0$	35°	35^{1}	$35^{1} 1$	$35^{\circ} 2$	357	$35 \cdot 6$	347	$33 \cdot 6$	33^{17}	320	32'1	32'4	$32 \cdot 8$	33.6	$34^{\prime 2}$	34.5	34.6	34'7	347	34.9	35'I	$35^{\prime 1}$	35'3	34.3
Means	337	$33 *$	337	3377	33^{8}	33.8	34.3	34'1	33.6	$32 \cdot 8$	323	31.8	31.8	32*3	327	$33 \cdot 3$	33.6	33.6	33.4	33.4	335	337	337	$33 \cdot 8$	33.9	$33 \cdot 3$

Diurnal Inequality of the Dip at Kodaikánal as deduced from the freceding Table.

Hours.

Summer.
N. B.-When the sign is + the Dip is more, and when -it is less than the mean.

II.

TIDAL AND LEVELLING OPERATIONS.

Extracted from Narrative Report of Mr. C. F. Erskine, in charge No. 25 Parly (Tidal and Levelling Operations), for Season 1908-09.

> Personnel.

Imperial Officer.
Mr. C. F. Erskine.

Provincial Officers.
Messrs. J. P. Barker, H. G. Shaw, E. H. Corridon, Syed Zille Hasnain, A. M. Talati, O. N. Pushong, P. N. Sur, D. H. L.uka, T. F. Kitchen, H. St. J. Kenny.

Subordinate Establishment.
1 Surveyor, 24 Computers and Recorders, 2 Artificers, 3 Observatory Clerks.

TIDAL OPERATIONS.

2. Work of the year.-During the past year tidal registrations by self-registering tide-gauges, were taken at the ports of Aden, Karáchi, Apollo Bandar (Bombay), Prince's Dock (Bombay), Madras, Kidderpore, Rangoon, Moulmein, and Port Blair. In addition, tide-pole readings of high and low water were taken during daylight at the ports of Bhávnagar, Akyab, and Chittagong, with the object of comparing the actual times and heights with the predictions; the observations were made under the direction of this department, and the immediate control of the Port Officers concerned. The reduction by harmonic analysis of the observations for 1908 of eight stations named above, excluding Moulmein which was not working in that year, has been completed. The tide-tables for 1910 have arrived in India, and have been distributed. The work of publication of tide-tables for 40 ports for the years 1911 and 1912 is in progress in England. Data for these predictions were despatched from the office in Dehra Dún in July 1908 ; for the tide-tables for 1913 they are in preparation.
3. List of Tidal stations.-The following table gives a list of the 42 ports at which tidal observations have been registered, together with the periods of observations from 1874 when tidal operations were begun, up to the present time. The permanent stations are shown in italics; the others are minor stations which were closed on the completion of the requisite observations :-

Serial No.	Stations.	Automatic or personal observations.	Date of commence. ment of observa. tions.	Date of closing of observations.	Number of years of obsctvations.	Remaris.
:	Suez	Automatic	1897	1903	7	
2	Perím . .	Ditto	1898	1902	5	
3	Aden . .	Ditto	1879	Still working.	29	
4	Muscat :	Ditto	1 193	1899	5	
'	Bushire .	Litto	1892	1901	8	

Serial No.	Stations.	Automatic or personal observations.	Date of commencement of observations.	Date of closing of observations.	Number of years of observa. tions.	Remarks.
6	Karáchi	Automatic	$\left\{\begin{array}{l} \mathrm{I} 868 \\ 188 \mathrm{I} \end{array}\right.$	$\begin{aligned} & \text { I880 } \\ & \text { Still } \end{aligned}$ working.	$\left.\begin{array}{c} 13^{*} \\ 28 \end{array}\right\} 41$	* Small Tide. Gauge working.
7 8	Hanstal . . . Navánar	Ditto Ditto	1874 1874	1875 1875	1	($\}$ (ide-Tables $\begin{aligned} & \text { not pub- } \\ & \text { lished. }\end{aligned}$
9	Okha Point	Ditto	$\left\{\begin{array}{l} \mathrm{I} 874 \\ \mathrm{Re}- \\ \text { started } \\ 1904 \end{array}\right.$	$\left.\begin{array}{c} 1875 \\ 1906 \end{array}\right\}$	$\}_{1}^{1}\right\}_{2}$	Year 1904-05 is excluded.
10	Porbandar	Personal	1893	1894	2	
10 A	Porbandar .	Automatic	1898	1902	5	With certain interruptions.
II	Port Albert Victor (Káthiáwár).	Personal	1881	1882	1	
11 A	Port Albert Victor (Káthiáwár).	Automatic	1900	1903	4	
12	Bhávnagar .	Ditto	1889	1894	5	Tide-pole readings taken.
13	$\begin{gathered} \text { Bombay } \\ \text { Bandar). } \end{gathered}$	Ditto	1878	$\begin{array}{c\|} \text { Still } \\ \text { n orking. } \end{array}$	31	
14	Bombay (Prince's Dock).	Ditto	1888	"	21	Property of Port Trust.
15	Mormugao (Goa)	Ditto	1884	1889	5	
16	Kárwár . .	Ditto.	1878	1883	5	
17	Beypore . .	Ditto	1878	1884	6	
18	Cochin . .	Ditto	1886	1892	6	
19	Tuticorin	Ditto	1888	1893	5	
20	Minicoy .	Ditto	1891	1896	5	
21	Galle . -	Ditto	1884	1890	6	
22	Colombo	Ditto	1884	1890	6	
23	Trincomalee	Ditto	1890	1996	6	
24	Pámban Pass	Ditto	1878	1882	4	
25	Negapatam . .	Ditto	1881	1888	6	Year $1884-85$ is excluded.
26	Madras . .	Ditlo	$\left\{\begin{array}{l}\text { 1880 } \\ \text { Re- } \\ \text { started } \\ 1895\end{array}\right.$	$\left.\begin{array}{c} 18 y o \\ \text { Still } \\ \text { work } \\ \text { ing. } \end{array}\right\}$	$\left.\begin{array}{l} 10 \\ 14 \end{array}\right\}$	
27	Cocanáda	Ditto	1886	1891	5	

Serial No.	Stations.	Automatic or personal observations	Date of commencement of observa• tions.	Date of closing of observations.	Number of years of observations.	Remaris.
28	Vizagapatam .	Automatic	1879	1885	6	
29	False Point	Ditto	1881	1885	4	
30	Dublat (Ságar Island)	Ditto	1881	1886	5	
31	Diamond Harbour	Ditto	188 I	1886	5	
32	Kidderpore	Ditto	188 I	Still working.	28	
33	Chittagong .	Ditto	1886	1891	5	Tide-pole readings
34	Akyab	Ditto	1887	1892	5	Ditto.
35	Diamond Island	Ditto	1895	1899	5	
36	Bassein (Burma)	Ditto	1902	1903	2	
37	Elephant Point	Ditto	$\left\{\begin{array}{l}1880 \\ \text { Re- } \\ \text { started } \\ 1884\end{array}\right.$	1881 1888	$\left.\}_{5}^{1}\right\}_{6}$	
38	Rangoon . .	Ditto	1880	$\underset{\text { working. }}{\text { Still }}$	29	
39	Amherst .	Ditto	1880	I 886	6	
40	Moulmein	Ditto	$\left\{\begin{array}{l}1880 \\ \mathrm{Re}- \\ \text { started } \\ 1909\end{array}\right.$	1886 Still working.	$\} 6$	
41	Mergui . . .	Ditto	1889	1894	5	
42	Port Blair .	Ditto	1880	Still working.	29	

4. Inspection of Observatories.-The nine tidal observatories now working were inspected during the year.
5. Working of Observatories.-The following account contains a detailed description of the working of the several tidal observatories during the year. It has been taken from reports of inspecting officers, from information furnished by port officers and from the registrations themselves.
6. Aden.-This observatory was inspected by Mr. Shaw in December 1908. During the past year, there were several interruptions in the tidal registrations, due either to the band sticking, the pencil failing to mark or the driving clock stopping, otherwise the gauge has worked satisfactorily.
7. Karáchi.-This observatory wàs inspected by Mr. C. F. Eiskine in January 1909. All the instruments were cleaned and left in perfect adjustment. The tide-gauge was found in good working order but in need of cleaning. The bed-plate of the tide-gauge bad settled 0.04 of a foot owing to the settlement of the new observatory. No break has occurred in the tidal registrations during the past year.
8. Apollo Bandar (Bombay).-This observatory was inspected by Mr. Erskine in January 1909. The tide-gauge was cleaned and left in adjustment.

There have been no interruptions in the tidal registrations during the past year.
9. Prince's Dock (Bombay).-This observatory was inspected by Mr. Erskine in January 1909. The gauge was found to be working satisfactorily. During the past year there have been a few interruptions in the tidal registrations, due either to the driving clock stopping, or to the breaking of the hair spring which supports the pencil weight.

1o. Madras.-This observatory was inspected by Mr. Shaw in December 1908. The tide-gauge was found to be working well but in need of cleaning. No breaks in the tidal registrations have occurred during the past year.
11. Kidderpore.-This observatory was inspected by Mr. Erskine in November and December ig08. The tide-gauge was found clean and in good working order, it was thoroughly overhauled and has been left in adjustment. The registrations of the tide-gauge are complete, there having been no interruptions during the past year.
12. Rangoon.-This observatory was inspected by Mr. Erskine in November 1go8. During the past year the tide-gauge has worked well; there have been no interruptions in the registrations. The tide-gauge was cleaned and left in adjustment.
13. Moulmein.-This is a new observatory erected by the Public Works Department on a site close to the old one dismantled in 1886 . The tide-gauge was installed and started by Mr. Erskine assisted by Mr. Shaw on January 1st, 1909, since which date, with the exception of a few unimportant breaks in its registrations due to the driving clock stopping, it has worked well during the year.
14. Port Blair.-This observatory was inspected by Mr. Erskine in December 1908. No interruptions in the tidal registrations have occurred during the past year. The tide-gauge was thoroughly cleaned at the time of inspection and left in good working order.
15. New observatory opened.-After a lapse of close on 23 years, a new observatory was erected at Moulmein by the Public Works Department, near the site of the old observatory erected in 1880 and closed in 1886 after six years' observations had been obtained. The principal reason for reopening this obscrvatory was that the Port Officer, Moulmein, considered that personal observations taken to a tide-pole were unreliable. The results derived from the observations which will now be obtained will serve as a check on the accuracy of the predictions and will be of benefit to both science and commerce.

This observatory will be a permanent one. It is situated immediately south of the main wharf, where there is sufficient depth of water at all times for direct communication between the river and the cylinder, and as it is isolated from the wharf, no vibration is felt from vessels mooring at the pontoon which is attached to this wharf. Had there been screw piles under the corners of the verandah in addition to those under the corners of the cabin there is no doubt that the observatory would have been more rigid, and vibration from other causes lessened to a minimum. As at present constructed, the observatory vibrates considerably at certain tide rips, to remedy this the Port Officer has been asked to have the cabin stayed up with wire ropes if this is possible. It is, however, satisfactory to note that notwithstanding this drawback, the tide-gauge has worked very well since it was started on January ist, 1909.

The cabin is $\mathbf{1 2}$ feet square. The iron cylinder is 27 feet 3 inches in length, having in its bottom plate one hole of 2 inches in diameter, and six holes of one
inch in diameter. As the water of this river is very muddy, this arrangement will, it is hoped, prevent mud from accumlating in the bottom of the cylinder.

The true zero of the gauge has been set to 24.29 .5 feet below bench-mark G.t. s.
в. м. A., the bench-mark of reference, which is cut on a block of Portland ${ }^{1880}$
cement let into the flooring of the Port Office verandah. This zero is identical with that determined when the gauge was first started in 1880 . The gauge is now working on the $\frac{1}{6}$ th scale, but at the next inspection will be altered to the $\frac{1}{4}$ th scale, that being the scale formerly adopted. Of the two bench-marks "A" and "B" erected in 1880, bench-mark "A" the bench-mark of reference was found intact and in good preservation; bench-mark " B " situated in the verandah of the Telegraph Office (old Post Office) had evidently been disturbed since the closing of the observatory in 1886 , as the letter " B " was missing, and the relative values between the two bench-marks differed by $0^{\circ} 027$ of a foot from the old values obtained when the observatory was working.
16. Registrations of Auxiliary Instruments discontinued.-With the sanction of the Superintendent, Trigonometrical Surveys, and the consent of the Port Officials concerned, all registrations of Mercurial and self-registering Aneroid Barometers, Thermometers and self-registering Anemometers have been discontinued since last inspection at ports where tide-gauges were working, as the Meteorological Department keep such registers at their observatories at such ports. An exception has been made at Karáchi, where at the special request of the Chief Engineer, Karáchi Port Trust, they are still in use. All these meteorological instruments were returned to the Mathematical Instrument Office, Calcutta.
17. Tidal diagrams and daily reports.-The tidal diagrams and daily reports have been submitted regularly to the office at Dehra Dún.
18. Tidal Constants.-The tidal observations for a year at 8 stations have been reduced and the tabulated values of the tidal constants thus derived are appended. There are no amears.

Values of the Tidal Constants, Aden, 1908.
The following are the amplitudes (R) and epochs (ζ) deduced from the 1908 observations at Aden; and also the mean values of the amplitudes (H) and of the eporhs (κ) for each particular tide evaluated from the 1908 observations:

Short Period Tides.

Short Period Tides-contd.

Values of the Tidal Constants, Karachi, 1907-08.
The following are the amplitudes (R) and epochs (ξ) deduced from the 1907.08 observations at Karáchi ; and also the mean values of the amplitudes (H) and of the epochs (r) for each particular tide evaluated from the $1907-08$ observations:-

Shart Period Tides.

Long Period Tides.

. Values of the Tidal Constants, Bombay (Apollo Bandar), 1908.
The following are the amplitudes (R) and epochs (ζ) deduced from the 1908 observations at Bombay (Apollo Bandar) ; and also the mean values of the amplitudes (H) and of the epochs (κ) for each particular tide evaluated from the 1908 observations:-

Short Period Tides.

		feet.	
	$\mathrm{M}\left\{\begin{array}{r\|r} \mathrm{R}= & 0.19 \\ \zeta= & 200^{\circ} \cdot 15 \end{array}\right.$	$\mathrm{O},\left\{\begin{array}{rr} \mathrm{R}= & 174 \\ \zeta= & 123^{\circ} .87 \end{array}\right.$	($\mathrm{R}=$
$\begin{gathered} \mathrm{S}_{1}\left\{\begin{array}{l} \mathrm{H}=\mathrm{R}= \\ \kappa=\zeta= \\ \mathrm{H}=\mathrm{R}= \end{array}\right. \end{gathered}$			$\mathrm{T}_{2}\left\{\begin{array}{l}\mathrm{L} \\ \zeta\end{array}\right.$
	$\mathrm{M}_{6}\left\{\begin{array}{r}\mathrm{H}=\quad \text {-019 }\end{array}\right.$	$Q_{1}\left\{\begin{array}{l}\text { H }\end{array}\right.$	
	$k=15.85$	$\kappa=56^{\circ} \cdot 43$	$=332^{\circ}{ }^{\circ} 96$
$\text { S. }\left\{\begin{array}{l} \mathrm{H}=\mathrm{K}=\quad \text { ois } \end{array}\right.$	$=008$	$\mathrm{R}=0.075$	$\text { (} \mathrm{R}=\quad 0099$
$S_{4}\left\{\begin{array}{c} 1 \\ \kappa=\zeta=200.42 \end{array}\right.$	$M_{8}\left\{\begin{array}{l} \\ \zeta=145^{\circ} 31 \end{array}\right.$	$L_{8}\left\{\begin{array}{l} \zeta=90^{\circ} \circ 08 \\ \zeta=0 \end{array}\right.$	$(\mathrm{MS})_{4}\left\{\begin{aligned} \zeta & =340^{\circ} .28 \\ H & =000 \end{aligned}\right.$
	$\mathrm{M}_{8}\left\{\begin{array}{c} \vec{H}= \\ \kappa= \\ \kappa= \\ 19^{\circ} \cdot{ }^{\circ} .56 \end{array}\right.$		(MS) $\left\{\begin{array}{r}\mathrm{H}=\begin{array}{r}.099 \\ \kappa= \\ 8^{\circ} \cdot 85\end{array}\end{array}\right.$
	$\begin{array}{r\|r} \kappa= & 19^{\circ} \cdot 56 \\ R= & 664 \end{array}$	$\begin{array}{rr} \boldsymbol{\kappa}= & 29 \mathrm{I}^{\circ} \cdot 53 \\ \mathrm{r}= & .955 \end{array}$	$\begin{aligned} & =\quad 38^{c} \cdot 85 \\ & =\quad .043 \end{aligned}$
$\mathrm{S}_{\mathrm{B}}\left\{\begin{array}{rlr}\mathrm{H}=\mathrm{R}= & .001 \\ \kappa= & = & 14^{\circ .04}\end{array}\right.$	$\text { O. }\left\{\begin{array}{l} \mathrm{R}=1.664 \\ \zeta= \\ \zeta=166^{\circ} \cdot 88 \end{array}\right.$	$\mathrm{N}_{0}\left\{\begin{array}{l} \mathrm{R}=\begin{array}{r} 955 \\ \zeta \end{array}=205^{0.3 \mathrm{I}} \end{array}\right.$	
	$\mathrm{O}_{1}\left\{\begin{array}{r} \mathrm{H}= \\ \kappa= \\ \kappa \end{array} \begin{array}{r} 6.659 \\ 48^{\circ} .82 \end{array}\right.$	$\mathrm{N}_{\mathbf{2}}\left\{\begin{array}{r}\text { \% } \\ \mathrm{H}= \\ \kappa= \\ \mathrm{R}\end{array}\right.$	$(2 \mathrm{SM})_{2}\left\{\begin{array}{r}\mathrm{H}= \\ \kappa= \\ \mathrm{H}= \\ 129^{\circ} 3^{2}\end{array}\right.$
$=108$	($\mathrm{R}=1 \cdot 399$		$\mathrm{R}=\quad .214$
$M_{1}\left\{\begin{array}{l} K=139^{\circ} .54 \\ \zeta=1 \end{array}\right.$	$\mathrm{K}_{1}\left\{\begin{array}{l} \mathrm{N} \\ \zeta=22_{4} .55 \end{array}\right.$	$\lambda_{2} \begin{cases} & \cdots \\ \zeta= & \cdots\end{cases}$	$2 \mathrm{~N}_{2}\left\{\begin{array}{l} \zeta=18^{\circ} 37 \\ H=210 \end{array}\right.$
$\mathrm{M}_{1}\left\{\begin{array}{r}\mathrm{H}= \\ \mathrm{H}= \\ 0.073 \\ 46.69\end{array}\right.$	$\mathrm{K}_{1}\left\{\begin{array}{r}\mathrm{H}= \\ \mathrm{H}\end{array}\right.$	$\lambda_{2}\left\{\begin{array}{l}H=1\end{array}\right.$	$2 \mathrm{~N}^{2}\left\{\begin{array}{r}\mathrm{H}= \\ \mathrm{K}\end{array}=\begin{array}{r}213 \\ 278^{\circ} \cdot 19\end{array}\right.$
$\left(\begin{array}{l} k=0.69 \\ k= \end{array}\right.$	$\boldsymbol{k}=45^{\circ} \cdot 22$	$\begin{aligned} & C_{k}= \\ & C_{\mathrm{R}} \because \\ & \end{aligned}$	$\begin{array}{rr} C^{\kappa}= & 27^{\circ} \cdot 19 \\ C R=022 \end{array}$
$\left\{\begin{array}{r} \mathrm{R}=4.030 \\ \zeta= \\ 27 \mathrm{I}^{\mathrm{n} .80} \end{array}\right.$		$\int^{\mathrm{R}}=\begin{array}{r} 252 \\ \zeta= \\ 282^{\circ} \cdot 30 \end{array}$	$(\mathrm{M}, \mathrm{N})\left\{\begin{array}{r\|r}\mathrm{R}= & .022 \\ \zeta= & 149^{\circ} 74\end{array}\right.$
	$\mathrm{K}_{2}\left\{\begin{array}{r} \zeta= \\ \mathrm{H}= \\ =172^{\mathrm{c}} \cdot 69 \\ 388 \end{array}\right.$		$\left(\mathrm{M}_{2} \mathrm{~N}\right)_{4}\left\{\begin{array}{rr}\mathrm{H}= & 1022\end{array}\right.$
	$\left\{\begin{array}{rr} \mathrm{H}= & { }^{\circ} 388 \\ \kappa & 353^{\circ}, 95 \end{array}\right.$	$\left\{\begin{array}{l}\text { H } \\ \kappa=350^{\circ} \cdot 94\end{array}\right.$	$\left(\begin{array}{l} \kappa=317^{\circ} \cdot 50 \\ k \end{array}\right.$
$\mathrm{R}={ }^{530} \cdot 062$	$\mathrm{R}={ }^{353} 411$	$\mathrm{f}=\left(\begin{array}{r} 218 \\ 0.0 \end{array}\right.$	$\mathrm{R}=0.047$
$\mathrm{M}\left\{\begin{array}{l} 11 \\ \vdots=295^{\circ} 16 \end{array}\right.$	$\text { P. }\left\{\begin{array}{l} R=233^{\circ} \cdot 03 \\ \zeta=2 \end{array}\right.$	$\mu_{2}\left\{\begin{array}{l}R=186^{\circ} \cdot 48 \\ \zeta\end{array}\right.$	$\left(M_{1} K_{1}\right)_{3}\left\{\begin{array}{l} \zeta \\ \zeta \end{array}=190^{\circ} 67\right.$
$\mathrm{M}_{3}\left\{\begin{array}{r} \zeta= \\ \mathrm{H}={ }^{295} .062 \end{array}\right.$	$P_{1}\left\{H=\begin{array}{r} 233 \\ 411 \\ 41 \end{array}\right.$	$\mu_{2}\left\{\begin{array}{r}\text { H }\end{array}=\begin{array}{r}216 \\ 303\end{array}\right.$	$\left(M_{3} K_{1}\right)_{2}\left\{H=\begin{array}{l} 0, \\ 0 \end{array}\right.$
$\left(\begin{array}{l} k=23^{\circ} 01 \\ R=100 \end{array}\right.$	$=43^{\circ} \cdot 48$	$C_{\kappa}=303^{\circ} \cdot 6 \mathrm{I}$	$\begin{aligned} & =69^{\circ} 90 \\ & =\quad 90 \end{aligned}$
$\mathrm{R}=10.102$	$\begin{array}{r} R=151 \\ r \end{array}$	$\left(\begin{array}{l} \mathrm{R}= \\ \mathrm{y}= \end{array}\right.$	$\left\{\begin{array}{l}K= \\ \zeta= \\ \hline 149^{\circ} \cdot 58\end{array}\right.$
$M_{4}\left\{\begin{array}{rr} \zeta= & 200^{\circ} \cdot 18 \\ H=102 \end{array}\right.$	$\mathrm{J}_{1}\left\{\begin{array}{l} \zeta=299^{\circ} \cdot 55 \\ \mathrm{H}= \\ \cdot 148 \end{array}\right.$	$\mathrm{R}_{2}\left\{\begin{array}{l} \zeta= \\ \mathrm{H}= \end{array}\right.$	$\left(2 \mathrm{M}_{2} \mathrm{~K}_{\mathrm{i}}\right)_{2}\left\{\begin{array}{r}\mathrm{K} \\ \zeta= \\ \mathrm{H}= \\ \hline 149.58 \\ .062\end{array}\right.$
$\left\{\begin{array}{l}1 \\ n=317^{\circ} \cdot 31\end{array}\right.$			$86^{\circ} \mathrm{O} .04$

Long Period Tides.

					R	ζ	H	κ
Lunar Monthly	Tide	.	-	-	'041	$9^{\circ} 05$	${ }^{\circ} 41$	$3^{18^{\circ}{ }^{\circ} 43}$
, Fortnightly	"	-	.	,	$\cdot 13$	$197{ }^{\circ} 03$	$\bigcirc 013$	$311^{0.71}$
Luni-Solar "	"		-	-	014	${ }_{13} 3^{\circ}{ }^{\circ} 94$	-0,4	$73^{\circ} \cdot 3^{8}$
Solar-Annual	"	-	.	.	$\cdot 103$	$5^{88^{\circ} \cdot 17}$	$\cdot{ }^{103}$	$337^{\circ} \mathrm{F} 2$
" Semi-Annual	"			.	$\cdot 127$	$26^{\circ} \cdot 70$	${ }^{1} 27$	$225^{\circ} \mathrm{Bo}$

Values of the Tidal Constants, Bombay (Prince's Dock), 1908.

The following are the amplitudes (R) and epochs (ζ) deduced from the 1908 observations at Bombay (Prince's Dock) ; and also the mean values of the amplitudes (H) and of the epochs (κ) for each particular tide evaluated from the 1908 observations:-

Short Period Tides.

Long Period Tides.

Values of the Tidal Constants, Madras, 1908.
The following are the amplitudes (R) and epochs (ζ) deduced from the 1908 ohservations at Madras; and also the mean values of the amplitudes (H) and of the epochs (κ) for each particular tide evaluated from the 1903 observations:-

Short Period Tides.

$A_{0}=2144$ feet.			
		$\begin{array}{r} Q_{1}\left\{\begin{array}{rr} \mathrm{R}= & 0001 \\ \zeta= & 172^{\circ} \cdot 88 \\ \mathrm{H}= & 001 \\ \kappa= & 106^{\circ} \cdot 23 \end{array}\right. \\ \mathrm{L}_{1}\left\{\begin{array}{rr} \mathrm{R}= & 023 \\ \zeta= & 69^{\circ .20} \\ \mathrm{H}= & 0.021 \\ \kappa= & 270^{0.88} \end{array}\right. \end{array}$	

Short Period Tides-contd.

Long Period Tides.

					R	ζ	H	κ
Lunar Monthly	Tide	-	-	-	'059	$42^{\text {c. }} 93$	$\cdot 058$	$35^{20} 04$
" Fortnightly	"	-	-	-	$\cdot 048$	$246^{\text {c. } 95}$. 047	${ }^{0 .} 09$
Luni-Solar "	"	-	-	-	. 023	$34^{0.88}$	-023	$335^{\circ}{ }^{82}$
Solar-Annual	"	-	-	-	-339	291 ${ }^{\circ}{ }^{\circ} 90$	339	$211{ }^{0 .} 43$
, Semi-Annual	"	-	-	-	$\cdot 238$	$260^{\circ} .53$	$\cdot 238$	$99^{\circ} 59$

Values of the Tidal Constants, Kidderpore, 1908.
The following are the amplitudes (R) and epochs (ζ) deduced from the 1908 observations at Kidderpore ; and also the mean values of the amplitudes (H) and of the epochs (κ) for each particular tide evaluated from the 1908 observations :-

Short Period Tides.

Short Period Tides-contd.

Values of the Tidal Constants, Rangoon, 1908.
The following are the amplitudes (R) and epochs (ζ) deduced from the 1908 observations at Rangoon; and also the mean values of the amplitudes (H) and of the epochs (\boldsymbol{r}) for each particular tide evaluated from the 1908 observations:-

Short Period Tides.

$\mathrm{A}_{0}=10 \cdot 130$ feet.					
		$Q_{1}\left\{\begin{array}{l} \mathrm{R} \\ \vdots \\ \mathrm{H} \\ \kappa \end{array}\right.$	$\begin{array}{r} .029 \\ 77.56 \\ 70.029 \\ 0 \\ 0.0 .6 \end{array}$	$\mathrm{T}_{\mathrm{s}}\left\{\begin{array}{l} \mathrm{R}= \\ \zeta= \\ \mathrm{H}= \end{array}\right.$	
					122°
		L_{2}	$328 \cdot 67$.314	(MS) ${ }_{4}$	
			$170^{\circ} 8{ }_{5}$		213 ${ }^{4.847}$
			1.041		${ }^{161}$
			$2^{\circ} \cdot 7$	(2SM)	$8^{\circ} \mathrm{O} 0$
			$114^{\circ}{ }^{\circ}{ }^{3}$		47^{1686}
$M_{1}\left\{\begin{array}{l} \\ \zeta\end{array}\right.$				$2 \mathrm{~N}_{2}$	$341^{\circ} \cdot 32$
$M_{1}\left\{\begin{array}{l}\text { H }\end{array}\right.$					
K $n=174^{\circ}{ }^{\circ} 20$					$144^{\circ} 41$
M $\left\{\begin{array}{l}R \\ \zeta=7080\end{array}\right.$			699.29		
$2\left\{\begin{array}{l} \\ \mathrm{H}=5 \\ 5\end{array}\right.$			$\cdot 353$	($\left.{ }_{2} \mathrm{~N}\right)_{4}$	- ${ }^{345} 186$
${ }^{\mu=13} 131^{\circ} 00$					$157^{\circ} 56$
$\mathrm{M}_{2}\left\{\begin{array}{l}R \\ \zeta=66^{\circ} \cdot 27\end{array}\right.$			$170^{\circ} \mathrm{F} 74$		215 $5^{\circ} 17$
$\mathrm{M}_{3}\left\{\begin{array}{r}\mathrm{H}=\quad 013\end{array}\right.$					${ }^{215} .175$
(${ }_{R}=156^{\circ}{ }_{48}$			$29 \mathrm{I}^{5} \cdot{ }^{\circ}$,	
$\underline{R}=45^{\circ} 8_{3}$					115 106.80
$\left\{\begin{array}{l}\text { H }=\quad .463 \\ \hline 66.12\end{array}\right.$					
${ }_{\pi=1}=166^{\circ} 1.12$				\{	$\begin{array}{r}\text {-114 } \\ \hline 6^{\circ}{ }^{48}\end{array}$
	Long F	Tid			
		R		H	
Lunar Monthly [ide		$\cdot 167$	$60^{\circ} \cdot 28$	$\cdot 165$	$8^{\circ} \mathbf{8 1}$
${ }^{\prime \prime}$ \# Fortnightly		$\cdot 116$	${ }^{27} 7^{2^{\circ} \cdot 19}$	115	$25^{\circ} \cdot 17$
Luni-Sola. Solar-Annual		$\cdot 420$		$\cdot 419$	455.63
Solar-Annual		r-995	$226^{\circ}{ }^{\circ}{ }^{\circ}$	ro95	
Semi-Annual		'132	${ }_{181} \mathrm{I}^{\circ} 3^{8}$	$\cdot 132$	$2.0{ }^{\circ}$. 35

Values of the Tidal Constants, Port Blair, 1908.
The following are the ampiitudes (R) and epochs (ζ) deduced from the 1908 observations at Port Blair; and also the mean values of the amplitudes (H) and of the epochs (\boldsymbol{k}) for each particular tide evaluated from the 1908 observations:-

Short Period Tides.

Long Period Tides.

				R	ζ	H	κ
Lunar Monthly	Tide	-	-	- 019	$53^{0 .} 38$	-019	$2^{\circ} \cdot 03$
" Fortnightly	"	-	-	'052	$235^{\circ} \cdot 27$	$\cdot 051$	$348^{\circ} \cdot 50$
Luni-Solar "	"	-	.	$\bullet 003$	$236^{0} 68$	*003	${ }^{17} 6^{\circ} \cdot 77$
Solar-Annual	"	-	-	-110	$219^{\circ} \mathrm{21}$	110	$13^{80} 71$
, Semi-Annual	"	-	-	'099	$329^{\circ} 98$	'099	$168^{\circ} \cdot 97$

19. Other Computations.-The actual times and heights of high and low water for 1908 at 12 ports have been compared with the predicted values pub. lished in the tide-tables and the results tabulated.
20. Auxiliary Reports. - Reports on the operations carried on in the Bombay Presidency and in Burma were prepared and submitted, the former to the Government of Bornbay, and the latter to the Principal Port Officer in Burma, Rangoon.
21. Receipt and issue of tide-tables.-The tide-tables for 1909 and 1910 were received in the office and were duly distributed.
22. Datum of tide-tables.-The datum for the tide-tables is the datum of soundings in the most recent Admiralty Charts, with the exception of Bassein, the datum for which port is "Indian spring low water mark" which has not been connected with the Admiralty datum.
23. Sale of tide-tables. - The amount realised on the sale of tide-tables during the financial year ending 3oth September 1909 is $\mathrm{R}_{2,578-12-0 \text {. }}$.
24. Data forwarded to England.-The following data were supplied to the Tidal Assistant, National Physical Laboratory, Teddington, England :-
(i) Actual values during 1907 of every high and low water measured in duplicate from the tidal diagrams at 8 stations, and of tide-pole observations taken during daylight at 4 closed stations, the latter under the supervision of the Port Officers, and supplied by them to this office.
(ii) Comparisons of the above with predicted values for 1907, the errors being tabulated in such form as to be of aid in improving the predictions.
25. Errors in Predictions.-The 5 tabular statements which are appended show the percentage and amount of errors in the predicted times and heights of high and low water for the year 1908 at 12 stations, as determined by comparisons of the predictions given in the tide-tables with actual values measured from the tidal diagrams at 8 stations, and from tide-poles at 4 stations, the former are made in this office, and the latter by the Port Officials.

No. 1.
Statement showing the percentage and the amount of the errors in the predicted times of high waters at the various Tidal Stations for the year 1908.

Stations.	Automatic or Tidepole observations.	Number of comparisons between actual and predicted values.	Errors of 5 minutes and under.	Errors over 5 minutes and under 15 minutes.	Errors over 15 minutes and under 20 minutes.	Errors over 20 minutes and under 30 minutes.	Errors over 30 minutes.
			Per cent.	P'er cent.	Per cent.	Per cent.	Per cent.
Aden	Auto.	689	44	42	6	6	2
Karáchi	Auto.	707	34	46	12	6	2
Bhávnagar	T. P.	366	52	48	0	0	0
Bombay $\left\{\begin{array}{l}\text { A pollo Bandar . }\end{array}\right.$	Auto.	707	42	43	6	7	2
Bombay Prince's Dock	Auto.	703	39	45	8	6	2
Madras	Auto.	706	39	45	9	7	0
Kidderpore	Auto.	707	16	28	15	25	16
Chittagong	T. P.	366	28	36	13	11	12
Alyab	T. P.	331	96	3	1	0	0
Rangoon	Auto.	707	29	42	13	13	3
Moulmein	T. P.	394	24	44	12	13	7
Port Blair	Auto.	704	49	38	6	5	2

No. 2.
Statement showing the percentage and the amount of the errors in the predicted times of low water at the various Tidal Stations for the year 1908.

Stations.		Number of comparisons between actual and predes. values.	Errors of 5 minutes and under.	Errors over 5 minutes and under is minutes	Errors ovet 15 minutes 20 minutes. 20 minates.	Errors ovet 20 minutes 30 minates jo minates.	Erors over 30 minutes
			Per cent.	Per cent.	Per cent.	Per cent.	Per cent
Aden	Auto.	68_{4}	34	46	. 9	7	4
Karáchi. . . .	Auto.	707	37	41	10	9	3
Bhávnagar - .	T. P.	366	53	47	0	0	-
Bomay Apollo Bandar.	Auto.	707	42	47	5	4	2
(Prince's Dock .	Auto.	703	36	44	9	8	3
Madras	Auto.	706	43	45	7	4	1
Kidderpore . .	Auto.	706	14	27	14	20	25
Chittagong	T. P.	366	25	32	10	16	17
Akyab - .	T. P.	331	97	3	0	0	-
Rangoon .	Auto.	706	28	34	14	13	11
Moulmein	T. P.	395	24	38	9	18	11
Port Blair . . .	Auto.	706	43	45	\cdots	4	1

No. 3.
Statement showing the percentage and the amount of the errors in the predicted heights of high water at the various Tidal Stations for the year 1908.

Stations.		Number of comparisons between actual and predicted values.	Mean range at $\underset{\substack{\text { springs } \\ \text { feet. }}}{ }$	Errors of 4 inches and under.	Errors over 4 inches and under 8 inches.	Errors over and under 12 iaches.	Errors over 12 inches.
				Per cent.	Per cent.	Per cent.	Per cent.
Aden	Auto.	689	6.7	95	5	-	0
Karáchi	Aulo.	707	93	81	18	1	0
Bhánnagar . .	T. P.	366	31.4	57	32	9	2
A Pollo Bandar .	Auto.	707	139	73	22	5	0
Bombay \{rince's Dock	Auto.	703	139	74	22	4	-
Madras	Auto.	706	35	94	5	1	0
Kidderpore	Auto.	707	117	47	27	14	12
Chittagong	T. P.	366	13.3	46	27	16	11
Akyab .	T. P.	331	, 8.3	81	18	0	1
Rangoon	Auto.	707	16.4	50	29	17	4
Moulmein	T. P.	394	12.7	30	24	22	24
Port Blair . . .	Auto.	704	6.6	99	1	0	-

No. 4.
Statement showing the percentage and the amount of the errors in the predicted heights of low water at the various Tidal Stations for the year 1908.

Stations.	Automatic or Tidepole observations.	Number of comparisons between actual and predicted values.	Mean range at springs in feet.	Errors of + inches and under.	Errors over 4 inches and under 8 inches.	Frrors over 8 inches and under 12 inches.	Errors ovet 12 inches.
				Per cent.	Per cent.	Per cent.	Per cent.
Aden . . .	Auto,	684	$6 \cdot 7$	95	5	0	0
Karáchi . . .	Auto	707	$9 \cdot 3$	77	21	2	0
Bhávnagar . . .	T. P.	366	314	$6!$	28	9	2
(Apollo Bandar	Auto.	707	139	69	26	5	0
Bornbay Prince's Dock .	Auto.	703	13.9	63	26	9	2
Madras . . .	Auto.	706	3'5	93	7	0	0
Kidderpore . . .	Auto.	706	117	44	25	14	17
Chittagong . .	T. P.	366	13.3	48	22	15	15
Akyab	T. P.	331	8.3	78	20	2	0
Rangoon - . -	Auto.	706	16.4	28	23	21	28
Moulmein	T. P.	395	127	32	22	20	26
Port Blair . . .	Auto.	706	6.6	98	2	0	0

No. 5.
Tables of average errors in the predicted times and heights of high and low water at the several Tidal Stations for the year 1908.

Stations.	Automatic or Tide-pole observations.	Mean range at springs in feet.	Averagr Errors.					
			Of Time in Minutes.		Of Height in terms of the range.		Of Height io inches.	
Oper Coast.			H. W.	L. W.	H. W.	L. W.	H. W	L. W.
Aden -	Auto.	67	9	10	${ }^{\circ} 025$	${ }^{\circ} \mathrm{O} 5$	2	2
Karáchi	Anto.	$9 \cdot 3$	10	10	-027	${ }^{\circ} 027$	3	3
Bhávnagar . . .	T. P.	$3{ }^{1} 4$	6	6	$\cdot 013$	${ }^{-1} 3$	5	5
Apollo Bandar	Auto.	13.9	9	8	-018	-18	3	3
Bombay \{ Prince's Dock	Auto.	13.9	9	10	'018	'024	3	4
Madras . .	Auto.	$3 \cdot 5$	9	8	-048	'048	2	2
Akyab	T. P.	$8 \cdot 3$	1	1	-030	-030	3	3
Port Blair . .	Auto.	6.6	8	8	-013	${ }^{\circ}{ }^{1} 3$	1	1
Gentral Mran			8	8	. 024	. 025	\ldots	\cdots
Riverain.								
Kidderpore	Auto.	117	18	22	${ }^{\circ} \mathrm{O} 3$	'050	6	7
Chitlagong	T. P.	13.3	14	17	$0 \cdot 8$	-038	6	6
Rangoon	Auto.	16.4	12	14	${ }^{\circ} 205$	${ }^{\circ} 46$	5	9
Moulmein	T. P.	$12 \cdot 7$	${ }^{1} 3$	15	-059	-os9	9	9
Grneral Meam			14	17	-041	-0,4	\cdots	...

The foregoing statement for the year 1908 may be thus summarised :Percentage of time predictions within 15 minutes of actuals.

$\begin{gathered} \text { Open Coast } \\ \text { Stations. } \end{gathered}$	6 at which predictions were tested by S. R. Tide-gauge				High water per cent. cent.	$\begin{gathered} \text { l.owv } \\ \text { water } \\ \text { per } \\ \text { pent. } \end{gathered}$
					84	84
	2 "	"		Tide-pole	100	100
$\underset{\text { Riverain }}{\text { Stations. }}\{$	2 "	"	"	S. R. Tide-gauge	58	52
	2 "	"	"	Tide-pole	66	60

Percentage of height predictions within 8 inches of actuals.

$\begin{gathered} \text { Open Coast } \\ \text { Stations. } \end{gathered}$	6 at which predictions were tested by S. R. Tide.gauge				High water per cent. cent.	$\begin{gathered} \text { Low } \\ \text { water } \\ \text { per } \\ \text { cent. } \end{gathered}$
					98	97
	2 "	"	"	Tide-pole	94	94
$\begin{aligned} & \text { Riverain } \\ & \text { Stations. } \end{aligned}$	$2 \quad 1$	"	"	S. R. Tide-gauge	77	60
	2 "			Tide-pole	64	62

Percentage of height predictions within one-tenth of mean range at springs.

26. Comparisons of the predictions at Riverain Stations.-The predictions for the riverain stations for the year 1908, were compared with those for the year before, with the following results :-

At Kidderpore they are about the same for high water times, but better for low water times. For the high and low water heights they are better. At Chittagong they are about the same for high and low water tirnes and for the low water heights, and better for the high water heights. At Rangoon they are better for the high water and low water times, and practically the same for the high and low water heights. At Moulmein they are worse for the high and low water times, they are better for the high water heights, but worse for the low water heights.

At Kidderpore the greatest difference between the actual and predicted heights of low water for 1908 was 2 feet 5 inches on 24 th June, the aclual being higher than the predicted, At Chittagong it was 3 feet, on 8 th July, the actual oeing higher. At Rangoon it was 2 feet 2 inches on 29th October, the actual
being lower. At Moulmein it was 2 feet 1 inch on roth and 14 th July and 2 3rd September, the actuals in each case being lower.

LEVELLING OPERATIONS.

27. Strength of Levelling sections.-During the past year three detachments were engaged on spirit-levelling operations.

The strength of the levelling detachments in the field was as detailed be-low:-

No. I detachment.-Three levellers : Mr. E. H. Corridon, ist leveller; Mr. O. N. Pushong, 2nd leveller; Mr. H. St. J. Kenny, under training; 3 recorders.

No. 2 detachment.-Three levellers; Mr. Syed Zille Hasnain, ist leveller; Mr. D. H. Luxa, 2nd leveller; Mr. T. F. Kitchen, under training ; 3 recorders.

No. 3 detachment.-Two levellers: Mr. A. M. Talati, ist leveller; Mr. P. N. Sur, 2 nd leveller; 3 recorders.

In each case the ist leveller had charge of the detachment.
28. Programme for past field season. - The following programme of work was allotted to the detachments :-

No. I detachment-

(i) To connect the stardard bench-marks at Sátára, Belgaum, Bangalore, Salem, Trichinopoly, Negapatam, Madura, Tinnevelly, Calicut, Bijápur, and Akola with the adjacent lines of levels.
(ii) To level from Secunderábád viä the metre gauge section of H. H. the Nizám's Guaranteed State Railway as far as Dichpali Railway station, thence by road viâ Nirmal and Edlábád to Warora, connecting the standard bench-marks at Secunderábád, Trimulgherry and Bolárum.
The connection of Náchangaon hill station was subsequently added to this progranime at the request of the officer in charge of No. 2 Party (Berár.)

No. 2 detachment-
(i) To continue the main line of levels from Nágaur to Ahmadábád along the Jodhpur-Bíkaner Railway and the Rájputána-Malwa Railway, connecting en route the stindard bench-mark; at Jodhpur and Ahmadábád.
(ii) To run a branch line of levels from Pálanpur to Deesa, connecting the standard bench-mark at Deesa.
On completion of the work at Ahmadabád the detachment was instructed to connect the standard bench-mark at Roorkee, and to carry a line of levels from Hardwár to Dehra Dún.

No. 3 detachment-
(i) To level from Katni along the East Indian Railway line to Jubbulpore and thence along the road via Seoni to Nágpur, connecting the standard bench-marks at Jubbulpore and Nágpur.
(ii) To level from Wardha to Warora along the Great Indian Peninsula Railway line, connecting the standard bench-mark at Hinganghat.
(iii) To connect the standard bench-marks at Saugor, Raipur, Biláspur, and Sambalpur.
Subsequently at the request of the officer in charge of No. 2 Party (Berar) the connection of Keljhar hill station and Esamba hill station of the great
trigonon etrical survey, and Hinganghát station and Karwa hill station of the minor triangulation was added to the above programme.
29. Duration of field season and work performed.

No. I detachment.-This detachment left Dehra Dún for Sátára on the 8th October 1908 arriving there on the 16 th idem. After preliminary arrangements were completed, work was started on standard bench-mark connections on the 18 th October and closed at Bijápur on the 20th December. The detachment then proceeded to Secunderábád, to take up the main part of the prograinme, work being resumed at that place on 23 rd idem, and closed at Warora on the 7th April 1909 . The connection of Náchangaon hill station and the Akola standard bench-mark was next taken up in succession, all operations being finally closed at Akola on the 13th April 1gog. The detachment then returned to Dehra Dún arriving there on the 15 th idem.
30. No. 2 detachment.-The detachment left Dehra Dún for the field on the $3^{\text {rd }}$ October 1908 and commenced work at Nágaur on the 1 ith idem, in contiruation of the previous season's operations. Pálanpur was reached on the 31st January 1909; from this place a branch line of levels was run to Deesa to connect the standard bench-mark erected there. Work was resumed on the main line at Pálanpur on the gth February and closed at Ahmadábád on the $1_{3}{ }^{\text {th }}$ March 1909. The detachment then proceeded to Roorkee to connect the standard bench-mark there with the line of levels executed by Lieutenant Morshead, R.E., from Nojli vià Roorkee to Hardwár during the previous season. This work was finished on the 24th March and next day the detachment moved to Hardwár and commenced work from there towards Dehra Dún. The levelling was carried out partly along the railway line and partly along the road and the operations for the season were finally closed at Dehra Dún on the 9th April 1909.
31. No. 3 detachment.-The detachment left Dehra Dún on the 14th October 1908 and arrived at Katni on the 18th idem. After making preliminary arrangements for the field work, the detachment proceeded to connect the standard bench-mark at Saugor and on completion of that work returned to Katni and commenced work on the main line, from there via Jubbulpore to Nágpur which was reached on the 4 th March 1909, the standard bench-marks at Jubbulpore and Nágpur having been duly connected in the course of the work. The line Wardha to Warora and the connection of the remaining standard bench-marks, and the trigonometrical survey stations mentioned in the programme were next taken in hand, and the field work was finally closed on the roth Apil 1gog. The detachment then returned to Dehra Dún reaching there on the 16th April 1909.
32. Outturn.-The total outturn of work completed by the three detachments amounted to 1,085 miles of double levelling of precision, in the course of which observations were taken at 13,528 stations, the total rises and falls amounting to $33,5^{8} 4$ feet. The bench•marks determined were 25 standard, 90 embedded, 625 inscribed and 34 belonging to other departments. The heights of three principal and eight secondary great trigonometrical survey stations and two topographical survey stations were also determined by levelling, as a check on the heights deduced by triangulation.

During the past field season three important lines of levels which were undertaken principally to break up the larger level circuits have been completed, viz., (1) from Ferozepore across Rájputána to Ahmadábád, (2) from Katni viá Jubbulpore and Sconi to Nágpur, (3) from Wardha via Warora and Nirmal to Secunderábád.

Tabular statements showing the details of the work performed by each detachment separaiely are afpended.

No. i Levelling Detachment.

Tabular statement of outturn of work-season 1908-09.

No. 2 Leveli.ing Detachment.
Tabular statement of outturn of work-season 1908-09.

No. 3 Levelling Detachment.
Tabular statement of outturn of work-season 1908-09

No. i Levelling Detachment.
List of great trigonometrical survey stations connected by spirit levelling in season 1908-og.

Name of Station.	Height in feet above Mean Sea Level.		Difference in height by triangulation in feet.	Remarks
	By spirit levelling.	By triangulation.		
Bora Gattu H. S., Bídar longitudinal series.	$2073 \cdot 222$	2080	+6778	Upper mark-stone,

No. 3 Levelling Detachment.
List of great trigonometrical survey stations connected by spirit levelling in season 1908-og.

Name of Station,	Height in pert above Mean Sea Level.		Diference in height by triangulation in feet.	Remarks.
	By spirit levelling.	$\underset{\text { triangulation. }}{\mathrm{By}}$		
Lora H. S., of Calcutta longitudinal series.	1929.357	1923	-6.357	Upper mark-stone.
Lapeta H. S., of Jubbulpore meridiumal series.	$1901{ }^{\circ} 4^{\circ}$	1895	-6.240	Do. do.

33. Difference between Levellers (First-Second).

No. I detachment:-

Section Warora to Secunderábád.

at 50th mile	-	-		+0.c84
, 100th ,		-	-	.	-	-	-		ro. 143
n 50 th "			.	-	-	-			+0.128
,200th ",			.	.					+0.142
"237th "					-	-			+0.103

No. 2 detachment :-
Section Nagaur to Ahmadábád.

at 50th mile	-	-	.	-	-	-	.		+0.095
, , ooth ,	-	-	-	-	-	-	-		+0.147
" ${ }^{\text {reoth }}$ "	.	-	-	,	-	-	.		+0.170
, 200th ",	-	-	-	-	-	-			+0.088
:250th "	.	,		-	-	.	.		+0.076
"300th ",	.	-	.			-			+0.108
, 35 cth "		-	-	.	,	-			+0.137
, $3^{88} 3^{\text {rd }}$,			.	-	.	-	.		+ 0.195

Section Hardwár to Dehra Dún.
at 33rd mile

No. 3 detachment:-

Section Katni to Nágpur.

Section Wardha to Warora.
at 46th mile -0'128
34. Levels and staves used in the field. - No. I detachment used cylindrical levels Nos. 4 and 1 on all the main and principal branch lines, and Cushing's reversible level No. 8522 and Bolton's reversible level No. 82 on branch lines to G. T. Survey stations; Mr. Corridon worked with the first named level of each pair and Mr. Pushong with the other. Mr. Kenny worked with the first or second levels according as he a.cted for the first or second leveller. The staves used were Nos. oi, 03 , 04 and os of the modified Cowie pattern.

No. 2 detachment used American binocular precise levels throughout the season's work :-Mr. Syed Zille Hasnain worked with level No. 2697, and Mr. Luxa with level No. 2626 and Mr. Kitchen with level No. 2698. The staves used by the detacbment were single faced, Nos. $16 \mathrm{~A}, 16 \mathrm{~B}, 20 \mathrm{~A}$ and 20 B , of the Committee's pattern.

No. 3 detachment. The levels used by this detachment on the main lines and most of the branch lines were cylindrical level No 3 by Mr. Talati and cylind ical level No. 2 by Mr. Sur; on branch lines to G. T. Survey stations the levels used were Duinpy level No 734 by Mr. Talati and Cushing's reversible level No. 8574 by Mr. Sur. The old G. T. pattern staves Nos. B 1, B 2, IIII and 4, were employed throughout the season.
35. Unit Correction fur staves.-Duriny the progress of the work the staves were compared with portable 10 foot standard steel bars almost every week, with the object of determining the correction for difference in unit of pairs of staves, to be applied to the observed heights in order to obtain the absolute heights.

Tables of these comparisons are appended.
No. i Levelling Detachment.
Results of comparison of staves-season 1908-09.

Place and Jate of comparison.		Number of Stapf.				Remakis.
		04	05	or	03	
Plain faces only.						
Sálára,	174h October 1908	+onot974	$+0007038$	--0033994	--0037744	$\left\lvert\, \begin{array}{cr} \text { Cloudy } & \text { for } \\ \text { past } & 3 \\ \text { days. } & 3 \end{array}\right.$
Belgaum,	24th " "	$\begin{aligned} & -.0000076 \\ & -0001518 \end{aligned}$	+0000024	-0041976	--004 ${ }^{\text {4 }}$ (50	Clondy. Rain 4 day: ago.
Hangalore	1st November		+ 0005700	-0037614	--0040082	Cioudy. Occasional showers fir 3 or 4 days.

Results of comparison of staves-season 1908-09.

- Red Faces only.

[^1]No. 2 Levelling Detachment.
Results of comparisen of staves-season 1908-09.

No. 3 Levelling Detachment.

Results of comparison of staves -season 1908-09.

Place and date of comparison.			Number of Staff. (White face.)				Rgmaris.
			B 1.	B 2.	IIII.	4	
Katni,Katni,	21st October 1908		$\begin{aligned} & +0.0040661 \\ & +0.0037: 78 \end{aligned}$	+0,0018726	+0,0037612	+0.0013212	Clear (dew).
	29th	" \quad		+0.0018217	+0.0026760	+0.0009379	"
Sleemanábád 1908. Mahangwan,	Road, 6th November		+0,0033625	+0,0014251	+0.0028747	+0,0004328	Light rain.
	$13^{\text {th }}$ November 1908.		+0.0038121	+0.0017663	+o,0033251	+0.0007653	Clear (dew).
Sihora Road,	20th		+0.0035397	+0.0012712	+0.0030647	+0.0005729	n
		\{	+0.0032:30*	$+0^{\circ} 0008282^{\circ}$	+0.002723 ${ }^{6}{ }^{\circ}$	+0.001 $1402{ }^{*}$	
Deori,	27th	" \quad.	+00036372	+0.0017137	+0.0031541	+0.0009562	Clear (dew
Jubbulpnre,	8th December		+0.0028965	+0,00107, ${ }^{8}$	+0.0027017	+0.0005354	-
Jubb:lpore,	$14 t h$	" ${ }^{\prime}$	+0'00:6692	+0.0008960	+0.0024882	-0.0001098	Clear.
Nigri,	2 Ist	"	+o.0n3igl	+0.0012502	+0.0026392	-0.0000591	"

[^2]Results of comparison of staves-season 1908-09-contd.

- Mean of both white and black faces. Owing to umaller levels with single wires haviag to be used on triangulation station connections both faces of staves were used.

36. Change in the system of levelling.-Binocular precise levels have been used by No. 2 levelling detachment since 1905%. Some modifications were made in the G. T. Survey levelling system consequent on the use of the above levels. These modifications were fully described in the narrative report for season 19?7.08. The principal change was that three reading; were taken on one lace only of the staff in place of one reading on each of the two faces. This change in the system resulted in an appreciable saving of time and labour, and a corresponding increase in the oulturn of work. It was therefore decided to introduce the modified system of observations in all first class leveling operations conducted by the Survey of India. At the commencement of the past field season the number of Binocular precise levels in stock with the party was not sufficient for the use of all the levelling detarhments. The existing cylindrical levels were therefore provided with three horizontal wires and these were successfully used under the modified system by detachments Nos. I and 3. During the past, field season, all the main lines and most of the branch lines have been execited by the modified sysiem of levelling. On branch lines to some of th: G. T. Survev hill stations, the cylindrical levels fitted with three horizontal wires could not be used on account of the strep nature of the ground, hence smaller levels containing single horizontal wires were used. In such cases the old system of observation was anployed.

A sufficient number of Binocular precise levels has nov been obtained and it will be possible to equip all the three detachments with levcls of this description
during the coming field season, and the old system of observations will no longer be resorted to.
37. Levelling in the Himalayas.-At the instance of the Director, Geological Survey, instructions ware received to carry out line; of precise levelling to certain Himalayan stations during 19.3. \mathbf{o}. An o.pportunity was therefore taken towards the close of the year under report, to supplement the bench-marks fixed between Rájpur and Mu isoore : in 1905, by special:y selected and protected rock-cut bench-marks, as a model for the above lines. Filteen bench-marks were fixed on ground rock and protected by masonry pillars 2 feet square and about 9 inches high with an aperture in the centre 6 inches square. On the top of the protecting pillar a stone slab 9 inches square and 2 inches thick has been fixed bearing the following inscription :-

G. T. Survey
 0
 Upper Mark.

In fixing this slab care was tak $ب \mathrm{n}$ to put the circle vertically above the mark cut on rock and the heisht of the upper mark above th? lower was carefully measured. In addition to the above bench-marks one standard and 3 inscribed bench-marks were also built at Mussooree. All the new bench-marks were duly connected by levelling.
38. Standard Bench-marks.-During the past year 16 standard benchmarks were erected and 26 connected, 32 are under construction and 39 have been proposed for erection.

The following is a complete list of standard bench-marks as they stood at the close of year 1908-c9:-

Nos.	Completed and connected.	Completed not yet connected.	Under canstruction.
1	I in Calcutta (old).	1 in Sukkur	1 in Berhampur.
2	2 in Bombay (old).	I in Hyderábád (Sind).	1 in Vizagapatam.
3	1 in Madras (old).	I in Karáchi.	1 in Cocanáda.
4	1 in n aráchi (old).	1 in Mhow.	1 ifi Bezwáda.
5	I in Rangoon (old).	1 in Jacobábád.	1 in Nellore.
6	2 in Dehra Dún.	1 in Surat.	1 in Motíhári.
7	1 in Saháranpur.	1 in Godhra.	1 in Bankipore.
y	z in Muzaffarnagar.	I in Dhúlia.	1 in Bhágalpur.
9	2 in Meerut.	1 in Baháwalpur.	1 in Rurdwán.
10	t in Aligarb.	1 in Rajkot.	1 in Purnea.
11	1 in Bareilly.	1 in Khánpur.	1 in Dinájpur.
12	1 in Sháhjahánpur.	1 in Sadikganj.	I in Cuttack.
13	1 in Lucknow.	1 in Baroda.	1 in Balasore.
14	2 in Sítápur.	1 in Muzaffarpur.	1 in Dhubri.
15	I in Fyzábád.	1 in Rewah.	1 in Gauháti.

Nos.	Completed and connected.	Completed not yet connected.	Under construction.
16	2 in Allahábád.		1 in Rangoon.
17	1 in Mirzápur.		1 in Pegu.
18	1 in Benares.		1 in Toungoo.
19	1 in Gházípur.		1 in Mandalay.
20	1 in Gorakhpur.		1 in Shwebo.
21	1 in Muttra.		1 in Meiktila.
22	1 in Agra.		1 in Magwe.
23	I in Gwalior.		1 in Myitkyina.
24	1 in Lahore.		1 in Wuntho.
25	I in Ráwalpindi.		2 in Bhopál.
26	1 in Jhánsi.		1 in Barisal.
27	1 in Delhi.		1 in Comilla.
28	1 in Ambala.		1 in Chittagong.
29	1 in Ludhiána.		1 in Dacca.
30	1 in Ferozepore.		I in Mymensingh.
31	1 in Jhelum.		

Nos.	Completed and connected.	Proposed for erection.
32	1 in Attock.	Silchar.
33	1 in Peshawár.	Sylhet.
34	1 in Deoláli.	Dibrugarb.
35	1 in Ahmadnagar.	Bhamo.
36	1 in Kirkee.	Thabeitkyn.
37	2 in Poona.	Sagaing.
38	1 in Sholápur.	Maymyo.
39	1 in Multán.	Hsipaw.
40	1 in Dera Ismail Khán.	Lashio.
41	1 in Raichúr.	Akyab.
42	1 in Bellary.	Tavoy.
43	1 in Cuddapah.	Mergui.
44	1 in Madras.	Sandoway.
45	1 in Bikaner.	Yamethin.
46	1 in Sátára.	Thazi.
47	1 in Belgaum.	Kyaukse.

Nos.	Completed and connected.	Proposed for erection.
48	1 in Saugor.	Myingyan.
49	1 in Bangalore.	Pakôkku.
50	1 in Jodhpur.	Monywa.
51	I in Calicut.	Thayetmyo.
52	I in Jubbulpore.	Thaton.
53	1 in Negapatam.	Pa-an.
54	1 in Madura.	Kyaikto.
55	1 in Trichinopoly.	Moulmein.
56	3 in Secunderábád.	Kalaw.
57	1 in Salem.	Taunggyi.
58	1 in Tinnevelly.	Loilen.
59	I in Bijápur.	Insein.
¢0	1 in Deesa.	Taikkyi.
68	I in Nágpur.	Kyauktan.
62	I in Hinganghát.	Twante.
63	1 in Akola.	Tharrawaddy.
64	: in Raipur.	Zigon.
65	I in Bilaspur.	Prome.
66	1 in Sambalpur.	Henzada.
67	1 in Ahmadábád.	Myanaung.
68	1 in Roorkee.	Danubyu.
69	1 in Mussooree.	Myaungmya.
		Ma-ubin.

Most of the following standard bench-marks, completed and under construction, will it is hoped be connected during the field season 1909-10:-

Nos.	Completed.	Under construction.	Rbasars.
1	1 in Sukkur.	1 in Berhampur.	
2	r in Hyclerábád.	1 in Vizagapatam.	
3	I in Karáchi.	1 in Cocanáda.	
4	1 in Mhow.	s in Bezwáda.	
5	1 in Jacobábád.	1 in Nellore.	
6	1 in Surat.	I in Motíhári.	
7	1 in Godhra.	I in Bankipore.	

Nos.	Completed.	Under construction.	Remaras
9 10 11 12 12 14 15	1 in Dhúlia. r in Baháwalpur. i in Rájkot. I in Khanpur. 1 in Sadikganj. 1 in Baroda. 1 in Muzaffarpur. 1 in Rewah.	$\begin{aligned} & 1 \text { in Bhágalpur. } \\ & I \text { in Burdwán. } \\ & I \text { in Purnea. } \\ & I \text { in Dinájpur. } \\ & I \text { in Cuttack. } \\ & I \text { in Balasore. } \\ & I \text { in Barisal. } \\ & I \text { in Comilla. } \\ & I \text { in Chittagong. } \\ & I \text { in Dacca. } \\ & I \text { in Mymensingh. } \\ & I \text { in Dhubri. } \\ & I \text { in Gauháti. } \\ & I \text { in Rangoon. } \\ & I \text { in Pegu. } \\ & I \text { in Toungoo. } \\ & I \text { in Mandalay. } \\ & I \text { in Shwebo. } \\ & I \text { in Meiktila. } \\ & I \text { in Magwe. } \\ & I \text { in Myitkyina. } \\ & I \text { in Wuntho. } \\ & 2 \text { in Bhopall. } \end{aligned}$	

39. Destruction of bench-marks.-During the past year 65 bench-marks were reported as lost or destroyed.
40. Recess duties.-The levelling computations have been completed and manuscript pamphlets of heights have been brought up to date.
41. Health of levelling detachments.-The health of the members of the levelling detachments was generally far from good at the commencement of the field season, a large percentage of the establishment suffered from malarial fever. But later on the health of the men improved and in the latter portion of the season was on the whole good.
42. Inspection of the party.-The Superintendent, Trigonometrical Surveys, inspected the party in May 1909.
43. Programme for field season, 190g-ro.-The levelling operations to be performed during the coming field season are:-

No. I Levelling detachment.-
(i) New levelling from Wuntho to Myitkyina.
(ii) Revision levelling from Pyinmana to Rangoon.
(iii) The connection of standard bench-marks at Rangoon, Pegu, Toungoo, Mandalay, Shwebo, Meiktila, Magwe, Wuntho and Myitkyina.
No. 2 Levelling detachment-
(i) Levelling from Síliguri to Tindhária.
(ii) Levelling from Bareilly to Naini Tál.
(iii) Levelling from Hardwár to Lansdowne.
(iv) ,, " Ambála to Solon.
(v) The connection of standard bench-marks at Nellore, Bezwáda, Cocanáda, Vizagapatam, Berhampur, Cuttack, Balasore, Burdwán, Gauháti, Dhubri, Dinájpur, Purnea, Bhágalpur, Patna (Bankipore), Muzaffarpur, Motíhári, Rewah and Lucknow (new).
Na. 3 Levelling detachment-
(i) Levelling from Laluwali T. S. near Khánpur to Rohri.
(ii) Levelling from Shikárpur to Jacobábád.
(iii) Levelling from Pali H. S. to Godhra.
(iv) ", Lahore to Dharmkot.
(v) The connection of standard bench-marks at Sadikganj, Baháwalpur, Khánpur, Sukkur, Jacobábád, Hyderábád (Sind), Karáchi, Godhra, Baroda, Rájkot, Surat, Dhúlia, Mhow, and Bhopál.

III.

THE PENDULUM OPERATIONS.

Extracted from the Narrative Report of Captain H. Mc C. Cowie, R.E., in charge No. 23 Party (Pendulums), for the Season 1908-09.

1. During the winter of 1908-09, pendulum operations were carried out in the western portion of Central India, the stations visited; lying, for the most part, in the Sátpura and .Vindhyan hill tracts. Latitude operations executed in peninsular India had revealed deflections of the plumb-line which pointed to the existence, in the material forming the earth's crust, of a belt of great density, the southern edge of which runs from about Bhusáwal towards Hinganghát and thence north-westwards, to a little to the north of Biláspur. Plumbline deflections had also indicated the existence of a tract, stretching from west of Ahmadábád to Indore and Mhow and perhaps a little further eastwards, where the subjacent matter was of low density and which, lying within the belt of high density, appeared by reason of its relatively small area as an intrusive feature. One of the objects of this season's work was the more precise location of the lines of demarcation between the regions of high and low density. Besides this, the operations were expected to add materially to the data gradually being collected for the purposes of future discussions of the larger questions of the compensation of visible masses and the investigation of the constitution of the earth's crust.
2. The examination of the variation of gravity in Central India embraces an array of conditions somewhat different to those prevailing in extra-peninsular regions. In the former, the geological formations comprise the oldest rock strata of India. They cover enormous areas and show that from early geological times the crust, here, has not been subjected to great pressures. The $b: d s$ are little disturbed and the present configuration is mainly due to denudation. The hill masses have not been produced by folding nor by upheaval of the crust, but are merely the remnants of the extensive plateaux existing in earlier times. The relations of the crust to the internal magma are, here, perhaps, more uniform than in extra-peninsular India. The crust has not, it would appear, been subjected to great lateral thrust. The stresses which portions of it have had to withstand have been caused, rather, by overloading by volcanic ejecta and the material has yielded to the forces in operation not by folding but more probably by faulting. On the other side of the Gangetic plain the case is entirely different. Here the geological formations are much contorted; everywhere there are signs of great crustal disturbance; strata, much folded and crushed, have been thrust upwards, forming mountain masses. It cannot be supposed that the enormous pressures, which have produced this condition, have been operative only on the surface of the crust. It seems reasonable to infer that the relations of the crust to the interior have been similarly disturbed; that the mountain masses on the surface are but incidental features of the thickening of the crust below, portions of which have been forced downwards into the magma. The characters of the two regions are, thus, very dissimilar. In the one case, it is that of a portion of the crust, stable and quiescent through
long ages, while that of the other is appropriate to the scene of much orogenic disturbance. This variety of character in the peninsular and extra-peninsular areas constitutes one of the most attractive features of gravimetric research in India, giving rise to problems of much interest as to whether the crust in peninsular India has arrived at a condition of isostasy; whetner this condition has been affected by great denudation of the surface; whether the attaining of such a condition in the extra-peninsular area has been assisted or retarded by the great crustal movements which have taken place there.
3. The stations visited were-

	Station.				Latitude.	Longitude.	Height.
					- , "	- , "	feet.
Ujjain	- -	-			23110	7547 -	1,612
Mhow	- -	-	-	-	223310	754540	1,903
Mukhtiara	- -		-		222340	$755^{8} 40$	926
Mortakka	- •		-	-	221320	$76 \quad 250$	576
Khandwa	. -	-	-	-	214930	762130	1,014
Asirgarh	-		-	-	2128 10	761750	2,077
Jálgaon -	- •			-	2100	753350	760
Amraoti	- •			-	205550	774540	1, 123
Ellichpur .	. -	-	-	-	211820	773040	1,314
Badnúr	-		-	-	215410	7754 10	2,103
Shahpur	- •	-	-	-	221130	7754 10	1,286
Hoshangábád	-				22450	774350	1,002

Both Ujjain and Mhow are on the gentle northern slope of the Vindhyan plateau, Mhow being close to the crest of the southern scarp. Mukhtiara and Mortakka are in the Narbada valley. The former is 12 miles north of the river and some 8 miles from the Vindhya crest which here runs up, in places, to about 2,500 feet above sea-level, and the latter place is immediately on the south bank. Khandwa lies between the Narbada and Tapti rivers, in the gap of the Sátpura hills. Asírgarh is on one of the high peaks defining the crest of the Sátpurás, a prominent feature of the locality, of the type common in Western India, flat-topped with precipitous sides. From the southern foot of the hill, the ground slopes gently to the Tapti. On the north, after a belt of irregular hill masses, relatively lower in height, the ground slopes to the Narbada. To the west of Asirgarh, the Sátpurás are represented by a mountainous region with occasional high peaks, while immediately to the east, occurs the noticeable break in the system, some 25 miles wide. Jalgaon is situated in the Tapti valley about 7 miles south of the river. Amraoti and Ellichpur lie in the Berár plains south of the Sátpurás. Badnúr aud Shahpur are over the centre of the Sátpura mass and Hoshangábád is on the south bank of the Narbada. For the greater part, these stations lie upon, or very close to the edge of, the Deccan trap. Hoshangábíd is on the alluvium of the upper reaches of the Narbada, while Jálgaon is close to the edge of the alluvium of the Tapti valley. Generally speaking, the trap to the north of the Narbada, overlies Vindhyan
beds, while to the south the gneiss of peninsular India, presumably, lies at the base of the basalt.
4. At all these places, thanks to the kindness of local officials, the pendulum observatory could be installed in masonry buildings. At most of them the means of easily controlling the temperature within the room were sufficient. The exceptions were Ellichpur and Badnúr, where the rooms were small and isolated, with little protection from the sun, and Asirgarh, where the control was somewhat difficult by reason of the prevailing high wind and an indifferently weather-proof building.
5. The temperature changes will be found summarised in table I. The value of the mean hourly change of temperature was comparatively large at Ellichpur, Amraoti and Mhow. No corrections for lag in temperature have, however, been applied to the times of vibration.

TABLE I.
Average temperatures during the observations.

6. Determinations of the flexure of the pendulum support were made both before and after the series of observations of the time of vibration of the pendulums. On each occasion at least two sets of flexure determinations were made. The results are exhibited in table II. As will be seen there, the lexure
correction remained very steady at each place and varied during the season from $37^{8} \times 10-7$ to $67^{8} \times 10-7$.

TABLE II.
The fiexure correction.

	Station.		Date.	Observed Flexure correction.	Adopted Flexure correction.
Dehra Dún	- •	-	1908, December 2nd.	$\begin{aligned} & 43^{\circ} 9 \\ & 45 \cdot 4 \\ & 46^{\circ} \cdot 8 \\ & 45^{\circ} \\ & 44^{\circ} \end{aligned}$	
			" 18th.	$\begin{aligned} & 44: 7 \\ & 44^{\circ} \end{aligned}$	$45^{\circ} 0$
Ujjain	-	-	1908, December 3 Ist.	$\begin{aligned} & 51.0 \\ & 51.4 \\ & 51.6 \end{aligned}$	
			1909, January 4th .	$\begin{aligned} & 50 \cdot 3 \\ & 5 \mathrm{I} \cdot \mathrm{I} \\ & 5 \mathrm{I} \cdot \mathrm{t} \end{aligned}$	51.1
Mhow	- .	-	1909, January 8th .	$\begin{aligned} & 36 \cdot 7 \\ & 37.1 \\ & 36.9 \end{aligned}$	
			" 12th .	$\begin{aligned} & 37 \cdot 0 \\ & 38 \cdot 2 \\ & 37 \cdot 9 \end{aligned}$	$37^{\circ} 3$
Mukhtiara	- -	\cdot	1909, January 15 th .	$\begin{aligned} & 46 \cdot 5 \\ & 47 \cdot 8 \\ & 46 \cdot 6 \end{aligned}$	
			" iyth	$\begin{aligned} & 46 \cdot 6 \\ & 44^{\circ} 2 \\ & 44^{\circ} \end{aligned}$	$46 \cdot 0$
Mortakka	- •	-	1909, January 22nd .	$\begin{aligned} & 69 \cdot 2 \\ & 68 \cdot 4 \\ & 68 \cdot 6 \end{aligned}$	
			" 26th .	$\begin{aligned} & 64.4 \\ & 67.4 \\ & 66.7 \end{aligned}$	67.5
Khandwa	. \cdot	-	1909, January 29th .	$\begin{aligned} & 51.5 \\ & 51.6 \\ & 53.1 \end{aligned}$	
			1909, February 2nd .	$\begin{aligned} & 51.6 \\ & 52.5 \\ & 51.5 \end{aligned}$	5'0

TABLE II-contd.

The unit in table II is the seventh decimal place of a second.
7. Throughout the season, the clock rate was determined by Mr . Hanuman Prasad with the Bent Transit Instrument made by Messrs. Troughton and Simms. The results of his observations were thoroughly satisfactory, the mean p. e. of a clock rate determined by observations on two successive nights being $\pm 0^{\circ} \circ \mathrm{Ol} 2$ and the mean p. e. of a value of the rate derived from observations of one star on two successive nights $\pm 0^{\circ} 04^{\circ}$.
8. In table III are given the observed times of vibration of the four pendulums in December 1908 and April-May 1909, at Dehra Dún, and the value of the time of vibration of the mean pendulum adopted for the season.

TABLE III.
Times of vibration of the several pendulums.

Date.	No. 137.	No. $1_{3} 8$.	No. 139.	No. 140.	Mean.
1908, Dec. 14-15	$0 \cdot 5072567$	0.5075001	-'5071583	$0 \cdot 5070864$	$0 \cdot 5072504$
15-16	2570	4988	1567	0855	2495
16-17	2565	4988	1573	0865	2498
17-18	2570	5001	1558	0859	2497
Means . .	$0 \cdot 5072568$	$0 \cdot 5074995$	0.5071570	0.507086r	$0 \cdot 5072499$
1909, April 29-30	0.5072560	0.5074990	0.5071587	$0 \cdot 5070862$	0×5072500
April 30 May 1	2567	$49^{8} 4$	1578	0851	2495
May \quad-2	2547	4988	1579	0859	2493
Means .	0.5072558	$0 \cdot 5074987$	0.5071581	- $0 \cdot 5070857$	0.5072496
General Means adopted for the season	0.5072563	0.5074991	$0 \cdot 5071576$	0.5070859	0.5072497
Differences, May-Dec.	-10	--8	+ II	-4	-3

It is interesting to note the gradual change that has been taking place in the times of vibration of the pendulums since January 1904. The following is a summary of the values of the times of vibration at different dates.

TABLE IV.
Times of vibration of the pendulums at Dehra Dún at different times between January 1904 and May 1909.

Date.		No. 137.	No. 138.	No. 139.	No. 140.	Mean.
1904, January	- .	- 5072599	- 5075016	-. 5071626	-. 5070869	0.5072528
, May .	- •	2589	5015	1613	0859	2519
, November	. .	2599	5016	1623	0849	2522
1905, May .	.	2581	5001	1583	0868	2509
" November	- .	2583	4990	1598	0854	2506
1906, April .	- .	2598	5001	1599	0860	2515
", November	. .	2598	5005	1599	0866	2517
1907, April .	-	2560	5002	1590	0867	2505
1908, January	-	2566	5011	1596	0865	2510
, April .	..	2574	5004	1595	0874	2512
" November	-	2572	5002	1589	0866	2507
" December	- •	2568	4995	1570	0861	2499
1909, May .	-	2558	4987	1581	0857	2496

The accompanying diagram, on which the changes in the times of vibration have been plotted, shews at a glance the nature of the behaviour of each pendulum. The black traces have been drawn through the points representing the observed values of the times of vibration. The red lines exhibit the most probable linear equations representing the black traces. The assumptions made here are that the change in each pendulum is a linear function of the interval of time and that the discrepancies between the black trace and the red line are accidental. With regard to the former, it would be more correct, if it be admitted that the alteration of the length of the pendulum is due to molecular change, to represent the variation of the time of vibration by an equation of a degree other than the first. For it is reasonable to suppose that, with the increasing age of the pendulum, the intensity of the molecular forces producing change would become weaker and that the curve exemplifying the effects of molecular change would be such that, if the co-ordinate y represent the effect the axis of x would be an asymptote.

At present, however, the data are insufficient to indicate the most suitable equation. An examination of the diagram shows that the changes in the pendulums are practically as great now as they were five years ago, that we are, as it were, still occupied with a portion of the curve where the angle between the tangent and the axis of reference, though comparatively large, varies but slowly. The diagram, it should be noticed, shows only the changes that have taken place, not the absolute values. The traces for the different pendulums have been so placed on the diagram as to interfere as little as possible with one another, confusion of lines being thus avoided. The three pendulums Nos. 137, 138, 139 appear to have changed in much the same way, all show a decrease of
length. No. 140, on the other hand, shows only a small change and that seems to inclite towards an increase of length. This slow decrease of length is not an unusual phenomenon in pendulum operations.

Professional Paper No. 10, pages 160, 161 should be referred to regarding the change that took place in pendulum No. 137 between November 1906 and April 1907.
9. It may be of interest to examine the changes that have taken place from time to time, during the periods of rest and work respectively. These changes are tabulated below.

TABLE V.

Changes in the times of vibration of the several pendulums during periods of work and rest respectively.
Changes during periods of work.

Period.			No. 137.	No. 138.	No. 139.	No. 140.	Mean pendulum.
January	1904 to May 1904	-	- 10	- I	- 13	-10	-9
November	" to " 1905	-	-18	- 15	-35	+19	- 13
"	1905 to April 1906	-	$+15$	+ 11	+ 1	+6	+9
"	1906 to " 1907	-	-38	-3	-9	+1	-12
January	1908 to " 1908	-	+8	-7	- I	+9	+2
November	, to May 1009	-	-14	-15	-8	-9	- 11

Changes during periods of rest.

The unit in the statement above is the seventh decimal place of a second. Here it is seen that the changes that take place during the field season are somewhat greater than the similar quantities for the periods of rest, though the duration of the intervals of time is practically the same in the two cases.

1o. Table VI shews for each station the time of vibration of the mean pendulum, the differences of these quantities from the corresponding quantity for Dehra Dún, and the values of gravity deduced from these differences, using for g at Dehra the value 979063 dynes. The p. e. of one determination of the time of vibration of the mean pendlum, as derived from the differences between the several values of the time of vibration of the mean pendulum and the respective station mean, is

$$
\pm 3^{2} .42 \times 10^{-7}
$$

This quantity corresponds to about ± 0000 dynes for the values given in the last column of table VI.

TABLE VI.

Table giving for each station, the mean observed times of vibration and the values of g deduced therefrom.

11. Table VII gives for each station, the observed value of gravity g, the corrections for height, mass and uneven terrain and the resulting value $g_{\circ}{ }^{\prime \prime}$ of gravity at sea level, the theoretical value γ_{\circ} and the differences $g_{\circ}{ }^{\prime \prime}-\gamma_{\circ}$ and $g_{\circ}-\gamma_{0}$.

In computing the theoretical values, use has been made of Helmert's 188_{4} formula

$$
\gamma_{0}=978 \cdot 00\left\{1+0^{\circ} 005310 \operatorname{Sin}^{2} \phi\right\}
$$

and in reducing the observed values to sea level, the density of surface masses has been assumed to be 2.8 .

TABLE VII.

Station.

At the first three stations, Ujjain^{2}, Mhow and Mukhtiara, on the scarp and plateau of the Vindhyas, the force of gravity varies but little and is in defect by about o.033 dynes, on an average, Between Mukhtiara and Mortakka on the bank of the Narbada, the intensity of the force increases, until at the latter place it is only slightly in defect. Further still to the south, at Khandwa and Asírgarh in the Sátpura tract and at Jálgaon, south of the Sátpurás, gravity is fourd to be in excess, the maximum, so far as the stations visited are concerned occurring at Khandwa, where the observed value, reduced to sea level, exceeds the theoretical by 0.038 dynes.

Generally, then, at the stations visited in the Vindhyas, gravity is found to be in defect, while in the Sátpurás it is in excess. The coincidence, however, of the line of demarcation between the areas of excessive and defective gravity with the natural boundary between the Sátpurás and the Vindhyas may be only accidental and further investigation is necessary before we can apply the generalization made above to these hill systems as a whole. At Amraoti and Ellichpur, in the plains of Berár, south of the Sátpurás, gravity is in excess by about the same amount as at Jálgaon, at the same latitude but 2° further west. As we move northwards, across the Sátpurás, to Hoshangábád, on the Narbada, the force of gravity, we see, decreases somewhat. It is to be noticed that at Shahpur gravity is in slight defect, whereas the results obtained at Badnúr and Hoshangábád would point to a small excess. An interesting feature of the results tabulated above lies in the fact that whereas in previous years excess of gravity had been found only at low-lying places, under 750 feet above sea level, we have here seven stations at altitudes of from 760 to 2,100 feet, at which gravity is in excess.
12. The following is a brief comparison of the season's results with values of $g^{\prime \prime}{ }_{0}-\gamma_{0}$ determined at places in extra-peninsular India, lying at approximately the same height as the Central Indian stations:-

Along the meridian of 76° between Jálgaon and Ujjain, the variations of gravity show that a greater. amount of matter is present to the south of the Narbada than to the north. This is not revealed by the actual configuration of the terrain. The summits of the Vindhyas to the north are just as high as those of the Sátpurás to the south. Indeed, the visible masses to the north and south of the river would lead one to suppose, rather, that there was a preponderance of mass to the north. Latitude observations made at Thikri in the Narbada valley showed that this supposition was incorrect and this indication has now been corroborated by the pendulum operations. The latitude observations, however, pointed to an excess of matter to the south without giving its definite situation. The pendulum has now located the position of the excess of mass.

In the above, when gravity is said to be in excess or defect, it is meant that the force is in excess or defect of what it would be, were the whole of the subjacent mass, above sea-level and in the crust, of a density of 2.8 .
13. In reducing the observed value g at the height of the station, to $g^{\prime \prime}$ 。 at sea level, the average crustal density has been assumed to be $2 \cdot 8$. The reliance that can be placed on the quantities $g^{\prime \prime}{ }_{0}-\gamma_{0}$ depends to some extent on the correctness of this value, and it is subject to this assumption that they show the variations of gravity from normal, allowance having been made for the effects of surface masses. It may, perhaps, be more instructive to compare with the theoretical values, the observed values corrected only for height of station; to form the differences, that is to say, $g_{0}-\gamma_{0}$. These differences show the actual abnormal effects of the subjacent masses, and these we can compare with the computed effects of visible masses, basing the latter upon any assumption of density we choose.

This comparison is made in the following table :-
Comparison of $g_{0}-{ }_{0} \gamma$ with the calculated effects of surface masses.

Now, wherever the theory of compensation holds good, we ought to find the actual effect of mass to be $n: l$, the effect of visible masses above sea level being compensated by underlying deficiencies; in other words, when the total amount of mass in a vertical column is normal, whatever the surface configuration, we should find the force of gravity to be normal, that is to say, equal to γ_{\circ} after making due allowance for the height above sea level. Now the quantity γ implies a normal amount of mass in the crust, so that $g_{0}-\gamma_{0}$ indicates the actual abnormal mass in excess or defect. When considering these indications, we can compare them with the conclusions that we would have been led to form from a consideration of the masses visible above sea level. At Mukhtiara, $g_{0}-\gamma_{0}$, a very small negative quantity, shows that here there is an approach to normal crust ; to a normal amount of matter, although this matter is so disposed and its density is such that it occupies more space than the normal crust, its upper surface lying' goo feet above the sea. Had all this mass above sea level been in excess of that in the normal crust, we would have found gravity in excess by about 0.032 dynes. At all the other stations visited $g_{0}-\gamma_{0}$ points to an abnormal excess of matter. Comparing these quantities with the calcuated effects of surface masses, we see that at Hoshangábád, Shahpur and Badnúr these masses, if their density were $2 \cdot 8$, are almost equal to the abnormal mass indicated by $g_{0}-\gamma_{0}$; consequently there is here scarcely any approach to compensation. At Hoshangábád and Badnúr, the visible masses are slightly less than the indicated excess; at Shahpur they are slightly greater. At Khandwa we see that the visible mass above sea level will account for not quite half the abnormal excess. At Uijain and Mhow, the visible masses are twice as great as is necessary to produce the observed variation from γ_{0}

The stations visited lie in an area about 144 miles square. If we can suppose that the mean value of $g_{0}-\gamma_{0}$ and the mean calculated mass effect for these places represent the whole area, we get a mean $g_{0}-\gamma_{0}=0.044$ and a mean calculated effect of 0.045 . If we are justified in assuming that these figures represent the region, they would indicate that here, in this portion of Ceniral India, there was no compensation of visible masses.

IV.

TRIANGULATION IN INDIA.

Extracted from the Narrative Report of Captain C. M. Browne, D.S.O., R.E., in charge No. 24 Party (Triangulation) for Seasons 1907-08 and 1908-09.

1. The report covers the work done in the two last seasons which com-prises:-
(a) The completion of the Kalát Longitudinal series.
(b) The commencement of the North Baluchistán and Kashmir series.
(c) The continuation of the Great Salween series.
(d) The carrying out of an accurate traverse in the Punjab.
(e) The inauguration of a programme of secondary triangulation.
2. (a) Completion of the Kalát Longitudinal series. Season 1907-o8. The detachment under Captain Browne assembled at Nushki on the 27th October and after spending a few days in collecting the necessary supplies and escorts left for Padag. Hera Messrs. Tresham and Norman were sent ahead to build the stations west of the line Tuzgi-Shuri (where Captain Browne had left off work the previous year) and Captain Browne proceeded to Kopadhar H. S. and Pulchotau H. S. and re-observed the angles which had been observed in 1904-05, as these had given an abnormal triangular error.

The error was thereby considerably reduced and the whole series west of the line Kopadhar-Pulchotau has been recomputed.

The regular work of the series was then resumed, new stations being fixed at Garuki Gori, Borghar, Maland Koh, Kacha Koh, Lar Koh, and Koh-i-Malik Siah (the trijunction of India, Afghánistán and Persia.) Astronomical azimuths were observed at Tuzgi and at Koh-i-Malik Siah and the difference between the values so obtained and those computed from the triangulation are given in the outturn statement the sign of the difference was in both cases positive, and that obtained at Koh-i \cdot Malik Siah ($+{ }_{1} 3^{\prime \prime} \cdot 24$) is the largest positive value yet obtained in India.

Mr. Tresham having in the meantime connected Robat with the principal series by a triangulation with a $6^{\prime \prime}$ micrometer theodolite, an astronomical latitude determination was made by circum-meridian altitudes. Field work was then closed with the permission of the Superintendent, Trigonometrical Surveys, and the detachment began its long march back to Nushki arriving there on the roth May.
3. At the end of this report will be found a table of the values now obtained for the latitude, longitude, height and azimuth of some of the main points compared with those hitherto accepted. It will be noticed that the error of azimuth accumulated at the end is considerable; this has often been found the case when a secondary ${ }^{\text {series }}$ is carri-d a long distance and would appear to be caused by some systematic error which would tend to accumulate and not to accidental errors.
4. When the Kalít detachment returned to Nushki it was joined by Lieutenant Oakes, R.E., and Mr. Wainwright ; the party was then railed to Mastung road where the detachment for work on the North Baluchistán series in the summer was formed from the men enlisted by Mr. Wainwright with a
nucleus of old men. Captain Browne handed over charge of the detachment to Lieutenant Oakes and proceeded himself to Quetta to interview Sir H. McMahon about the programme of triangulation in Baluchistán and from thence returned to Mussooree.
5. Lieutenant Oakes observed at Zawa, and Zibra stations of the Kaiát Longitudinal series and then fixed the following new stations of the North Baluchistán series, Koi Maran, Rastari Taing, Mashelak, Takatu and Khwája Amran.

An astronomical azimuth was observed at Mashelak (Lat. $30^{\circ} 14^{\prime}$, long. $66^{\circ} 47^{\prime}$) and the difference found between the value so obtained and that computed from the triangulation was $1^{\prime \prime} \cdot 25$, the sign of this difference was positive which is in accordance with other values found in that region.

The series was completed as far as the Toba plateau (Lat. 31°) the eight completed triangles have an average error of $0 " 41$ and contain an area of 3,500 square miles. The side Koi Maran-Takatu is remarkable for its length (over 68 miles) it being the longest side yet employed in the principal triangulation of India.

The work was greatly hindered by the dust haze which is prevalent in the summer, but the height of some of the stations made it impracticable to carry out the work in the winter.

The detachment suffered considerably from malarial fever owing to the unusual amount of rain that fell ; work was closed at the end of November, and the detachment recessed at Dehra Dún.
6. In August icog, Mr. Tresham recommenced the work from where Lieuterant Oakes had left off, and up to date has fixed new stations at: Padughar, Nari Shela, Gunduk, Kand, Basha, and Sakir.

The work is still in progress and consequently full details cannot be given in this year's report.
7. N.-W. Frontier Province detachment.-Lieutenant Cardew, R.E., was the observer and his programme was to start the North Baluchistán series from the east, and to carry it south-west over the Sulaimán range with the intention of joining up with the western part of the North Baluchistán series which had been begun in 1908, and in addition to this a secondary series was to be run in order to fix the positions of Pakkalota, Jinighar, and Darweshta Sar with accuracy so as to co-ordinate the different topographical triangulations in the Tochi and Kurram valleys.

The detachment was formed in the beginning of October 1908 and proceeded to Dera Ismail Khán and from thence to Umar Khel, a station of the Great Indus series, but it was found that the triangulation could not be commenced from there as the station of Maidán had been destroyed.

The series was therefore commenced from the sides Bani-Sakesar, and Sakesar-Umar Khel and a new station, which has been called Maidán II, was built near the site of the former one.

On the hill of Maidán a broken stone with a single dot cut on it was found, there was a cairn over it and Lieutenant Cardew's observations shew that it must have been almost exactly on the site of the former station; the data of the two points are given below, No. I represents the data of the stone found by Lieutenant Cardew ; No. 2 that of Maidán H. S. of the Great Indus series.

Latitude.			Longitude.			Height.
0	,	"	-	,	*	
1. 3^{2}	51	570	71	10	39'99	4256.7
2. 3^{2}	51	5\% 70	71	10	$40 \cdot 00$	$4275{ }^{\circ}$

It is difficult to account for the large difference of height unless it is due to the observations of the old Great Indus series not having been taken at the time of minimum refraction.

Observations were taken by Lieutenant Cardew at the following principal stations:-Bani, Sakesar, Umar Khel, Shistarg, Maidán II, Sheikh Ullah, and .Baindarra, the last four being newly constructed stations.

Shistarg is on a lower peak of Sheikh Budin on which was formerly a principal station and a subsidiary station of the Great Indus series.

Owing to the building of the cantonment on Sheikh Budin both these stations have been lost.

Baindarra is near the site of an old station erected by Lieutenant Walker when carrying out the Great Indus series, from this station, and from Shistarg, only the back angles were observed as the station which was intended to be built on Kaisarghar or the Takht-i-Sulaimán could not be built from political reasons.

Stations have been built on Ziárat, Surkund, and Sángéghar, but no observations have been taken; and it is probable that a junction will now have to be made with the Great Indus series in the neighbourhood of Dera Gházi Khán.

The secondary stations mentioned in the programme were also fixed, and a comparative table of old and new values is given below. Work was closed and the detachment returned to recess quarters at Mussooree, in the middle of April.

The health of the men on the whole was good, but on first leaving Dera Ismail Khán many suffered from malarial fever which was very prevalent in the district at that time.

Lalitude.
Pakkalita h. s.-

(a) 32	58	19.045	
(b)	32	58	18.95

Jinighar h. s. -
$\begin{array}{llll}\text { (a) } & 33 & \text { 10 } & 35.637\end{array}$
(b) $33 \quad 10 \quad 35 \cdot 48$

Darwestita Sar h. s.-

(a) 33	09	$41 \cdot 933$	70	20	0.459	$5056 \cdot 3$
(b) 33	09	$41 \cdot 4^{8}$	70	20	0.56	$5073 \cdot 1$

(a) Values obtained from Lieutenant Cardew's observations in season rgo8-09.
(b) Values obtained from Lieutenant Phillimore's observations in season 1904-05.
8. (c) The Great Salwoen series.-In 1907 it was decided to recommence this series without stopping the work in Baluchistán, so a detachment was formed under Lieutenant Cardew, R.E. The programme for this detachment was to carry on the Great Salween series southward from the stations Loi Hsámhsíp, and Loi Kang Mong, up to which it had been completed from the west in 1902.03 ; the station Loi Ai-hpang had also to be observed at as one angle had been omitted in 1902.03 on account of bad weather.

The detachment arrived at Lashio in the first week of November, but owing to the equipment being delayed on the railway a start could not be made until the 18th November.

Lieutenant Cardew took observations from the following stations:-Loi Hsámhsip, Loi Ai-hpang, Loi Kang Mong, Loi Taow, Loi Hpa-tan, Loi Maw, and Loi Líng; at Loi Hpa-tan an astronomical azimuth was also observed, and the difference found between the value so obtained and that computed from the triangulation was $8^{\prime \prime} \circ 1$, the sign of this difference was negative which is in
accordance with the other values found in that part of Burma. All the abovementioned stations, and those for continuing the series southward had been built in previous seasons, but as it is now intended to turn the series to the eastwards along the parallel of $22^{\circ}, \mathrm{Mr}$. Collins was employed in selecting and building stations on the east side of the Salween river; the stations built by him were Loi Pè-möng, Loi Lung, and Loi Aunglawn. Dust haze delayed the work considerably at Loi Maw and Loi Líng, and as it became denser and as at the next station long rays would have to be observed, no further stations were visited.

The detachment returned to Dehra Dún in April and a small detachment was then formed to complete the programme of triangulation in the Dún begun in 1907.

Lieutenant Gwyn was attached to the party and he and Lieutenant Cardew completed the observations at Doíwála H. S. of the Great Arc series. The dust haze was very dense and the observations were only completed with the greatest difficulty, so it was decided not to attempt to do any more that year.

The health of the detachment both in the Shan States and in the Dún was good.

A detailed statement of the outturn of work is appended to this report.
9. In 1908.09 the Great Salween series was continued from where it had been left off by Lieutenant Cardew the previous year.

Captain C. M. Browne, R.E., was the observer and the detachment assembled at Lashio on the gth of November, but heavy rain fell continually until almost the end of November and no work was possible until the first week in December.

New stations were fixed at Kiip Ma, Hpa Hpak, Tawn, Paning, Pè-möng Aunglawn, and Wánwa.

An astronomical azimuth was observed at Kiip Ma and the difference found between the value so obtained and that computed from the triangulation was $8^{\prime \prime} .60$ which is in accordance with the other values found in that part of Burma.

In addition to the principal triangulation Captain Browne fixed several of the stations of the topographical triangulation on which No. it Party were basing their work.

The dust haze came on very early in the year and work had to be closed on the 2nd March, the detachment arriving at Lashio on the 2ist of March.

The country east of the Salween river is very difficult to traverse, the hills being very steep and roads almost non-existent.

The health of the detachment was on the whole good although in the carly part of the season fever was very prevalent, and in the district small pox was rife in the villages, care was taken to avoid canping in the villages where there were cases and no case occurred among the survey establishment.

A detailed statement of the outturn of work is given at the end of this report.
10. Upper Irrawaddy detachment.-Mr. Smith with a small detachment selected and built the stations for this series from the initial side Loï Song. Tangte of the Great Salween series up to latitude $25^{\circ} 30^{\prime}$.

Lieutenant Cardew, R.E., will this coming field season observe these stations and continue the selection and building.

The series is intended to turn to the west at its present limit of latitude and running due west up to longitude 96° turn to the south and join on to the Mandalay sertes in the neighbourhood of Katha.
u1. Kashmir detachment.-The programme for this detachment was to commence a series from the side Nehr-Khagriána of the North-Western Himalaya series, and to carry it northward to connect up with the existing triangulation in Kashmír.

The detachment was formed in Dehra Dún in the middle of April and proceeded to Ráwalpindi and from thence to Nehr.

The work was much delayed at the start from the fact that no stations had been built in advance and in the months of July and August by the monsoon.

Mr. Wyatt with a small party was detached to inspect and repair the stations of the Kashmír (Montogomerie's) series.

As the detachment is still in the field details of the work will have to be given in next year's report.
12. (d) Secondary Triangulation.-In the Punjab a traverse was run with the Jaderin apparatus from Búrála T. S. of the Jogi Tíla series to Shorkot H. S. and Doráwála S. in order to co-ordinate the various traverses on which the topographical and revenue work of that district is based. The observers were Messrs. Tresham, Wyatt and McInnes.

The work was carried out with every care to ensure accuracy and it would appear more probable that the-large difference found between the values now obtained for Shorkot and Doráwála and those given in the synoptical volume is due to errors of the secondary series by which they were fixed unless the assumed length of " C " wire is largely in error.

The fact that the difference becomes smaller on coming back to Doráwála than it is at Shorkot, seems to indicate that there is some error in the assumed length of "C" wire. Comparative data for these two stations are given below :-
I. Represents values obtained from the traverse;
II. that from the synoptical volume of the Jogi-Tila Meridional series.

Station.	Latitude.			Longitude.		
Shorkot	I. -30°	49'	$57^{\prime \prime} 80$	72°	06'	$42^{\prime \prime} \cdot 30$
	II. -30°	49'	58'ı51	72°	06'	$43^{\prime \prime} \cdot 23$
Doráwála	I. -30°	27^{\prime}	$51^{\prime \prime} \cdot 64$	72°	29'	55" 725
" .	II. -30°	27^{\prime}	52"'60	$72^{\text {0 }}$	29^{\prime}	56"'02

The total length of the traverse was 118 miles and as bench-marks have been tmbedded at about every 6 miles the heights of which were ascertained by spirit levelling during the course of the work, the line should be of permanent utility when the error has been located and distributed.

A detailed statement of the outturn of work is given at the end of this report.
13. (e) (1) In Assam Mr. Johnson commenced the selection and building of the stations for the Khási Hills secondary series. His detachment consisted of 22 men and field work was begun from Shillong in the beginning of November.

Some difficulty was experienced in obtaining transport and supplies, and the detachment suffered a good deal from malarial fever.

Twelve stations were selected and built, and Mr . Sinith will this field season observe them, and continue the selection and building of the series.
14. (e) (2) In Lower Burma the selection and building of stations for the Mawkmai secondary series was carried from the initial side (LetpataungSuletaung) of the Mandalay Meridional series, up to longitude $98^{\circ} 15^{\prime}$.

The Mawkmai series will run from the Mandalay Meridional series up to the Mongsat secondary series.

Two observers are to be employed this field season and it is hoped that it will be completed this year.

In the year under report Mr. Collins was in charge of the detachment and 28 stations were selected and built.
15. (e) (3) In Upper Burma a small detachment under Babu Mohan Lal Arora was employed on the selection and building of the stations for a secondary series in the Bhamo district, starting from the side Tangte-Taungkalat of the Great Salween series.

The series was intended to run north along the meridian of 97° and Lieutenant Cardew will endeavour to fix the stations already built from his principal stations on the Upper Irrawaddy series.

In recess the computations of the last field season's work were completed, and the recomputation of the Kalát Longitudinal series (necessitated by the re-grinding of the Kopadhar-Pragi figure) carried out.
16. The party was inspected in recess by the Superintendent, Trigonometrical Surveys, on the 3oth June.

Statement of outturn of work.

Kalát Longitudinal Series,
1907-08.

Great Salween Series.
1907-08.
Number of principal stations at which observations were taken 7
Ditto ditto newly fixed 5
Length of new series, in miles 55
Area of triangulation, in square miles 1,800
Average triangular error of 14 triangles $0^{\prime \prime} .64$
Value of Astronomical-Geodetic azimuth at Loi Hpa-tan . -08".oI
1908-09.
Number of principal stations at which observations were taken 8
Ditto ditto newly fixed 8
Length of new series, in miles 100
Area of triangulation, in square miles 4,200
Average triangular error of 9 triangles $\mathbf{o}^{\prime \prime \prime} \cdot 47$
Valuc of Astronomical-Geodetic azimuth at Kiip Ma . . $-8^{\prime \prime} \cdot 60$

North Baluchistán Series.
 1907-08.

Number of principal stations at which observations were taken 8
Ditto ditto newly fixed 6
Length of new series, in miles 100
Area of triangulation, in square miles 3,500
Average triangular error of 9 tríangles $0^{\prime \prime \prime} \cdot 4 \mathrm{I}$
Value of Astronomical-Geodetic azimuth at Mashelak . . $+\mathbf{1}^{\prime \prime} \cdot 25$

North Baluchistan Series.
 1908-09.

Number of principal stations at which observations were taken 7
Ditto secondary ditto ditto ditto . 4
Ditto principal stations newly fixed 4
Ditto secondary ditto ditto 4
Length of new series in miles, principal 50
Ditto ditto ditto secondary 50
Area of triangulation, in square miles, principal . . . 1,900
Ditto ditto ditto secondary . . $\mathbf{1 , 2 0 0}$
Average triangular error of 7 triangles of the principal series $\quad 0^{N}, 60$
Ditto ditto of II ditto secondary series $3^{\prime \prime \prime} \cdot 58$
Value of Astronomical-Geodetic azimuth at Umar Khel $\quad+7^{\prime \prime} \cdot 66$
Faderin Traverse.
Length of traverse in miles 118
Number of stations at which observations were taken . . 7^{6}
1)itto markstones embedded and fixed . . . 22

Comparative of Stations and Intersected Points of the Kalat Longitudinal Series.

G. T. Values.						Mr. Tate's Valurs			Error.			Remarks.
Name of Station.			Latitude,	Longitude.	Height.	Latitude,	Longitude.	Height.	Latitude.	Loogitude.	Height	
			0 , *	, "	Feet.	- "	- .	Feet.	"	-	Feet.	
Amalai Speak	-	- - .	$\begin{array}{lll}29 & 8 & 577\end{array}$	61 42 57 12	4387×2	$29 \quad 8 \quad 597$	$\begin{array}{lll}61 & 43 & 27\end{array}$	4.372	+2'0	+5.5	+138	
Borghar .	-	- . -	$\begin{array}{llll}29 & 10 & 41 & 34\end{array}$	$61 \quad 5641 \cdot 83$...	29 10 43*5	$61 \quad 56$	4,029	+2.16	+5.47	-."	
Garuki Gori ,	- . -	- . -	$\begin{array}{lll}29 & 27 \quad 25.465\end{array}$	$\begin{array}{llll}61 & 47 & 57798\end{array}$	$2374 \cdot 3$	$\begin{array}{lll}29 & 27 & 27.5\end{array}$	$61 \quad 48 \quad 2.9$	2,387	+2.035	+5.102	+127	G. T. S.
Padagi . .	- .	-	$\begin{array}{llll}29 & 28 & 41 \% 44\end{array}$	6180648.88	70168	$\begin{array}{llll}29 & 28 & 43.1\end{array}$	$610654{ }^{\circ}$	7,033	+1.66	$+5.12$	+162	
Buzaf - .	- .	- - -	29 21 52\%04	$60 \quad 4406.54$	84396	$\begin{array}{llll}29 & 21 & 53\end{array}$	60 $44 \begin{array}{lll}11 & \end{array}$	8,453	+1.46	$+4.76$	+134	
Jikuli • -	- . .	- . .	$\begin{array}{llll}29 & 21 & 54.85\end{array}$	606491779	6758.9	$\begin{array}{llll}29 & 21 & 567\end{array}$	$\begin{array}{lll}60 & 49 & 23\end{array}$	6,773	+1.85	+5:51	+141	
Lar Koh -	- . .	- . -	$\begin{array}{llll}29 & 43 & 13.844\end{array}$	60	7772'1	$29 \quad 43 \quad 25: 2$	$\begin{array}{llll}60 & 55 & 11.5\end{array}$	7,766	+11.356	+5.947	$+60$	G. T. S.
Koh-i-Malik Siah	. .	- - .	29 51 32'043	$60 \quad 54 \quad 46.630$	$5392 \cdot 5$	$29 \quad 5133 \%$	$\begin{array}{lll}60 & 54 & 51 \%\end{array}$	5,392	$+1.857$	+4.770	- $\cdot 5$	G. T. S.

Errors in azimuth.

Stations.		G. T. Azimath.	Mr. Tate's Azimuth.	Difference.	G. T. reverse Azimulh.	Mr. Tate's reverse Azimuth.	Diference.
		- "	- , "	"	- "	- ,	*
Gharibo H. S. and Koh-i-Sultán H. S. .	- - -	$\begin{array}{lll}34 & 02 & 26 \cdot 273\end{array}$	$\begin{array}{llll}34 & 02 & 1540\end{array}$	-10.873	$213 \quad 57 \quad 370299$	$\begin{array}{llll}213 & 57 & 17 \%\end{array}$	-20.299
Garuki Gori H. S. and Koh-i-Malik Siah H. S.	- - •	$\begin{array}{lll}117 & 3^{8} & 5747\end{array}$	$117 \quad 38380$	-26.47	$\begin{array}{llll}297 & 12 & 38 \cdot 378\end{array}$	$\begin{array}{lll}297 & 12 & 1177\end{array}$	-26.678
Koh-i-Malik Siah and Buzaf .	- -	$\begin{array}{lll}17 & 29 & 172\end{array}$	$\begin{array}{lll}17 & 28 & 59\end{array}$	-18.2	$\begin{array}{lll}197 & 24 & 0\end{array}$	$\begin{array}{lll}197 & 23 & 45^{\circ} 0\end{array}$	-1599
Koh-i-Malik Siah and Jikuli . . .	- . . -	912230	$9 \mathrm{II} 42^{\circ} \mathrm{O}$	$-41^{\circ} \mathrm{O}$	$189 \quad 09 \quad 40 \cdot 50$	$\begin{array}{lll}189 & 09 & \text { or }\end{array}$	$-38 \cdot 70$

CALCUTTA

 DUPERINTENDIENT GOVEBNMENT PRINTINO, INDIA 8. EASTINGS STBEETEXTRACTS

FROM

NARRATIVE REPORTS OF OFFICERS OF THE Suntov of Fndia

FOR THE SEASON
1908-09

PREPARED UNDER THE DIRECTION OF
Colonel F. B. LONGE, R.E., C.B., A.-D.-C.
SURVEYOR GENERAL OF INDIA

CONTENTS
\qquad
I. - The Magnetic Survey of India
II.-Tidal and Levelling Operations
III.-PENDULUM OPERATIONS
IV.-Triangulation in India

CALCUTTA

[^0]: Note - The above values of Dip, Declination, and Horizontal Forcs are uncorrected fer secular change, diurcal variation, inctrminental differenses etc., and are to be consilered preliminary values only.

 Where blanks occur, values have already been found during previous field seasons, or the observations have not been completed.

 The survey 7 mmbers rifer to the publishef chart : thus No. 783 denotes No. 3 station, the spherical co-ordinates of whose cent-e are $a^{\prime \prime}{ }^{\prime \prime}$ North Latituse and $76{ }^{\circ}$ East Longitude.

 All Longitudes are relerable to that of Madins Observatory taken at the value $80^{\circ} 14^{\prime} 47^{\circ}$ East fron Creenwich.

[^1]: - Owing to mealler levela with single wireg having to be uscd on Triangulation station connections, comparisons of red faces were made of atavet at Narsingpet, Warora and Akola as both faces of the staves had to be used.

[^2]: Meen of hoth white and black faces. Owing to smaller leve's with simble wires having to be ueed on triagulation statiou connections bolh faces of ataves were used.

